Bioprinting is an emerging technology in which cell-laden biomaterials are precisely dispersed to engineer artificial tissues that mimic aspects of the anatomical and structural complexity of relatively soft tissues such as skin, vessels, and cartilage. However, reproducing the highly mineralized and cellular diversity of bone tissue is still not easily achievable and is yet to be demonstrated. Here, an extrusion-based 3D bioprinting strategy is utilized to fabricate 3D bone-like tissue constructs containing osteogenic cellular organization. A simple and low-cost bioink for 3D bioprinting of bone-like tissue is prepared based on two unmodified polymers (alginate and gelatin) and combined with human mesenchymal stem cells (hMSCs). To form 3D bone-like tissue and bone cell phenotype, the influence of different scaffold stiffness and cell density of 3D bioprinted cell-laden porous scaffolds on osteogenic differentiation and bone-like tissue formation was investigated over time. Our results showed that soft scaffolds (0.8%alg, 0.66 ± 0.08 kPa) had higher DNA content, enhanced ALP activity and stimulated osteogenic differentiation than stiff scaffolds (1.8%alg, 5.4 ± 1.2 kPa). At day 42, significantly more mineralized tissue was formed in soft scaffolds than in stiff scaffolds (43.5 ± 7.1 mm vs. 22.6 ± 6.0 mm). Importantly, immunohistochemistry staining demonstrated more osteocalcin protein expression in high mineral compared to low mineral regions. Additionally, cells in soft scaffolds exhibited osteoblast- and early osteocyte-related gene expression and 3D cellular network within the mineralized matrix at day 42. Furthermore, the results showed that cell density in 15 M cells/ml can promote cell-cell connections at day 7 and mineral formation at day 14, while 5 M cells/ml had the significantly higher mineral formation rate than 15 M cells/ml from day 14 to day 21. In summary, this work reports the formation of 3D bioprinted bone-like tissue using a simple and low-cost cell-laden bioink, which was optimized for stiffness and cell density, showing great promise for bone tissue engineering applications. STATEMENT OF SIGNIFICANCE: In this study, we presented for the first time a framework combining 3D bioprinting, bioreactor system and time-lapsed micro-CT monitoring to provide in vitro scaffold fabrication, maturation, and mineral visualization for bone tissue engineering. 3D bone-like tissue constructs have been formed via optimizing scaffold stiffness and cell density. The soft scaffolds had higher cell proliferation, enhanced alkaline phosphatase activity and stimulated osteogenic differentiation with 3D cellular network foramtion than stiff scaffolds. Significantly more mineralized bone-like tissue was formed in soft scaffolds than stiff scaffolds at day 42. Meanwhile, cell density in 15 M cells/ml can promote cell-cell connections and mineral formation in 14 days, while the higher mineral formation rate was found in 5 M cells/ml from day 14 to day 21.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2020.07.016 | DOI Listing |
J Dent Res
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
Cementum, a bone-like tissue, is an essential component of periodontium, and periodontitis can lead to degenerative changes in the cementum, eventually resulting in tooth loss. The therapeutic strategy for advanced periodontitis is to achieve periodontal regeneration, of which cementum regeneration is a key criterion. Cementoblasts are responsible for cementogenesis, and their mineralization counts in cementum regeneration.
View Article and Find Full Text PDFBiofabrication
November 2024
State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China.
Artificial bone graft stands out for avoiding limited source of autograft as well as susceptibility to infection of allograft, which makes it a current research hotspot in the field of bone defect repair. However, traditional design and manufacturing method cannot fabricate bone scaffold that well mimics complicated bone-like shape with interconnected porous structure and multiple properties akin to human natural bone. Additive manufacturing, which can achieve implant's tailored external contour and controllable fabrication of internal microporous structure, is able to form almost any shape of designed bone scaffold via layer-by-layer process.
View Article and Find Full Text PDFBioact Mater
February 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China.
The development of scaffolds for repairing critical-sized bone defects heavily relies on establishing a neuro-vascularized network for proper penetration of nerves and blood vessels. Despite significant advancements in using artificial bone-like scaffolds infused with various agents, challenges remain. Natural bone tissue consists of a porous bone matrix surrounded by a neuro-vascularized periosteum, with unique piezoelectric properties essential for bone growth.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Center of Excellence in Tissue Engineering, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India. Electronic address:
Bioglass (Bg) is accepted as a revolutionary material, and doping with strontium (Sr) ions in the Bg network exhibits improved biofunctionality towards bone tissue regeneration and inhibits osteoclast formation. Keeping this in view, the present study focused on the development of chitosan (CS)/gelatin (GE) porous scaffolds incorporated with Sr-doped Bg nanoparticles (nSrBg) for bone tissue engineering applications. The SEM analysis of the fabricated scaffold exhibited that it possessed a homogenous microstructure with an interconnected porous network having pore sizes of 100-300 μm.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, Shenzhen 518172, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!