The major concerns of today's textile wet processing are large use of chemicals and toxic effluents. Eco-friendly sustainable ways of textile processing which are safe to health and environment are receiving much attention. Wool fabric suffers from irreversible shrinkage during washing. In this study, sustainable biopolymers have been utilized to impart shrink resistance finish to wool fabric without affecting the original properties of the fabric. The wool fabric was coated with gum arabic, chitosan, and wheat starch biopolymers. The presence of biopolymers on the wool fabrics was confirmed by Fourier Transform Infrared (FTIR) spectroscopy and Field Emission Scanning Electron Microscopy (FE-SEM). The tensile, bending, friction, color strength, yellowness index and whiteness index was measured along with shrink resistance of wool fabric before and after the biopolymer treatment. The biopolymer treatment significantly reduced the area shrinkage (<4%) of wool fabric. The biopolymer coating could be a viable and sustainable alternative to conventional treatments for developing shrink-resistant wool fabric with no adverse effect on fabric properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2020.07.061 | DOI Listing |
ACS Appl Bio Mater
January 2025
Proteinic and Man-made Fibres Department, Textile Research and Technology Institute, National Research Centre, Cairo, Dokki, 12622, Egypt.
Wool is the most widely used proteinic natural fiber in the clothing industry by virtue of its versatile properties. Unfortunately, wool, as a natural fiber, is more susceptible to attack by microorganisms and moths, which may cause harm to the fiber and human health. That is why the antimicrobial and mothproof finishing of natural textiles is of prime importance to the textile and clothing industry.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China. Electronic address:
Membranes have been used as versatile tools for the separation of various natural products; however, the selective separation of structural analogs of natural products using membranes remains challenging. In this study, biocomposite membranes based on poly(ionic liquids) and different natural fibers (jute, cotton, or wool) were successfully prepared. Natural fibers can regulate the microstructure and improve the mechanical properties of membranes.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Automotive Engineering, Faculty of Technology, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey.
Natural fiber-reinforced composites are composite materials composed of natural fibers, such as plant fibers and synthetic biopolymers. These environmentally friendly composites are biodegradable, renewable, cheap, lightweight, and low-density, attracting attention as eco-friendly alternatives to synthetic fiber-reinforced composites. In this study, natural fiber-reinforced polymer foam core layered composites were produced for the automotive industry.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Geological Engineering and Geomatics, Chang'an University, Xi'an, 710054, China. Electronic address:
The construction of engineering projects in the Chinese Loess Plateau has resulted in large areas of exposed slopes, increasing the risk of soil erosion. Restoring the slope ecosystem is an effective means to reduce soil erosion, prevent soil and water loss, and maintain slope stability. Ecological slope protection using bio-gum solidified fiber-reinforced loess (GFSL) has been proven to achieve good vegetation restoration effects, but there remains a problem of low vegetation coverage in the early stage of protection.
View Article and Find Full Text PDFBMC Genomics
January 2025
Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
Wool growth and fineness regulation is influenced by some factors such as genetics and environment. At the same time, lncRNA participates in numerous biological processes in animal production. In this research, we conducted a thorough analysis and characterization of the microstructure of wool, along with long non-coding RNAs (lncRNAs), their target genes, associated pathways, and Gene Ontology terms pertinent to the wool fineness development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!