A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sodium thiosulfate prevents doxorubicin-induced DNA damage and apoptosis in cardiomyocytes in mice. | LitMetric

Sodium thiosulfate prevents doxorubicin-induced DNA damage and apoptosis in cardiomyocytes in mice.

Life Sci

Department of Disaster and Emergency Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Emergency and Critical Care Center, Kyushu University Hospital, Fukuoka, Japan.

Published: September 2020

Aim: Doxorubicin (DOX) induces dose-dependent cardiotoxicity due to reactive oxygen species (ROS)-mediated oxidative stress and subsequent apoptosis of cardiomyocytes. We aimed to assess whether sodium thiosulfate (STS), which has antioxidant and antiapoptotic properties, exerts cardioprotective effects on DOX-induced cardiomyopathy.

Main Methods: Male C57BL/6N mice were divided into four groups, control, DOX, STS, and DOX + STS, and administered DOX (20 or 30 mg/kg) or normal saline intraperitoneally, followed by an injection of STS (2 g/kg) or normal saline 4 h later.

Key Findings: The DOX group showed a poorer 6-day survival and decreased cardiac function than the DOX + STS group. The DOX group showed a marked increase in the plasma creatine kinase isoenzyme myocardial band (CK-MB) and lactate dehydrogenase (LDH) levels 10 h after DOX injection, while the DOX + STS group showed suppression of DOX-induced elevation of CK-MB and LDH levels. The DOX group showed increased 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in the heart, whereas the DOX + STS group showed increased catalase and superoxide dismutase (SOD) activities and decreased 8-OHdG levels in the heart compared with DOX group, suggesting that STS reduces DOX-induced DNA damage by improving antioxidant enzymes activities in cardiomyocytes. Additionally, the DOX + STS group showed attenuation of cleaved caspase-3 and DNA fragmentation in cardiomyocytes compared with the DOX group, suggesting that STS suppresses DOX-induced apoptosis in cardiomyocytes.

Significance: STS exerts cardioprotective effects against DOX-induced cardiac dysfunction partly by improving antioxidant defense and suppressing apoptosis, indicating the therapeutic potential of STS against DOX-induced cardiomyopathy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2020.118074DOI Listing

Publication Analysis

Top Keywords

dox group
20
dox + sts group
16
dox
9
group
9
sodium thiosulfate
8
dna damage
8
apoptosis cardiomyocytes
8
exerts cardioprotective
8
cardioprotective effects
8
effects dox-induced
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!