The interaction between SARS-CoV-2 and ACE2 may have consequences for skeletal muscle viral susceptibility and myopathies.

J Appl Physiol (1985)

Laboratory of Muscle and Nerve, Department of Diagnostic and Health Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee.

Published: October 2020

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7832004PMC
http://dx.doi.org/10.1152/japplphysiol.00321.2020DOI Listing

Publication Analysis

Top Keywords

interaction sars-cov-2
4
sars-cov-2 ace2
4
ace2 consequences
4
consequences skeletal
4
skeletal muscle
4
muscle viral
4
viral susceptibility
4
susceptibility myopathies
4
interaction
1
ace2
1

Similar Publications

Structure and properties of polysaccharides from tetrasporophytes of Mazzaella parksii.

Int J Biol Macromol

January 2025

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022 Vladivostok, Russian Federation.

The structure and anti-SARS-CoV-2 activity of sulfated polysaccharides (Mzpt) obtained in high yield (60 %) from tetrasporophytes of Mazzaella parksii were studied. Stepwise fractionation with KCl showed that Mzpt consisted of eight (MzptF1-MzptF8) carrageenans fractions, differing in structure and molecular weight. The yield of non-gelling MzptF8 was 58.

View Article and Find Full Text PDF

Structural insights into nucleocapsid protein variability: Implications for PJ34 efficacy against SARS-CoV-2.

Virology

January 2025

Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan. Electronic address:

Human coronaviruses (HCoVs) include common cold viruses such as HCoV-229E, OC43, NL63 and HKU1 as well as MERS-CoV and SARS-CoV, which cause severe respiratory disease. Recently, SARS-CoV-2 caused a COVID-19 pandemic. The nucleocapsid (N) protein of coronaviruses, which is essential for RNA binding and homodimerization, has a highly conserved structure across viruses.

View Article and Find Full Text PDF

Background: Health misinformation undermines responses to health crises, with social media amplifying the issue. Although organizations work to correct misinformation, challenges persist due to reasons such as the difficulty of effectively sharing corrections and information being overwhelming. At the same time, social media offers valuable interactive data, enabling researchers to analyze user engagement with health misinformation corrections and refine content design strategies.

View Article and Find Full Text PDF

The recent COVID-19 pandemic has set a strong quest for advanced understanding of possible tracks in abating and eliminating viral infections. In the view that several families of "pristine" small oxide nanoparticles (NPs) have demonstrated viricidal activity against SARS-CoV-2, we studied the effect of two NPs, with presumably different reactivity, on two viruses aiming to evaluate two "primary suspect" routes of their antiviral activity, either specific blocking of surface proteins or causing membrane disruption. The chosen NPs were non-photoactive 3.

View Article and Find Full Text PDF

Background: Ensitrelvir is a novel SARS-CoV-2 3-chymotrypsin-like protease inhibitor, similar to nirmatrelvir/ritonavir. Several case reports have demonstrated the efficacy of 3-chymotrypsin-like protease inhibitors in treating prolonged coronavirus disease 2019 (COVID-19) in immunocompromised patients. Tacrolimus (TAC) is a widely used immunosuppressive agent whose blood level can increase significantly due to the inhibition of cytochrome P450 3A (CYP3A) and P-glycoprotein by nirmatrelvir/ritonavir.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!