Herein, we combine for the first time SQUID magnetometry, cw-EPR, THz-EPR, and paramagnetic NMR spectroscopies to study the magnetic properties of a high-spin cobalt(II) heteroscorpionate complex. Complementary information provided by these methods allowed precise determination of the magnetic interaction parameters, thereby removing the ambiguity inherit to single-method studies. We systematically investigate the extent to which information about the magnetic interaction parameters can be deduced from reduced data sets. The detailed study revealed significant different magnetic properties in solid state and solution. To further exploit the information content of the solution NMR experimental results, we introduce the new concept of reduced paramagnetic shift. It allows for the determination of the magnetic axes and, subsequently, full NMR signal assignment. It is shown that even in complicated cases, in which common NMR analytics (integral intensities, relaxation factors, etc.) fail, it yields robust results.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.0c01191DOI Listing

Publication Analysis

Top Keywords

magnetic interaction
12
interaction parameters
12
study magnetic
8
magnetic properties
8
determination magnetic
8
magnetic
6
nmr
5
synergy struggle
4
struggle epr
4
epr magnetometry
4

Similar Publications

Magnetic resonance imaging (MRI) is an invaluable method of choice for anatomical and functional in vivo imaging of the brain. Still, accurate delineation of the brain structures remains a crucial task of MR image evaluation. This study presents a novel analytical algorithm developed in MATLAB for the automatic segmentation of cerebrospinal fluid (CSF) spaces in preclinical non-contrast MR images of the mouse brain.

View Article and Find Full Text PDF

This research focuses on the development of a novel Ru-doped TiO/grapefruit peel biochar/FeO (Ru-TiO/PC/FeO) composite catalyst, which exhibits exceptional photocatalytic efficacy under simulated solar light irradiation. The catalyst is highly effective in the degradation of rhodamine B (RhB), methylene blue (MB), methyl orange (MO), as well as actual industrial dye wastewater (IDW), and can be recovered magnetically for multiple reuse cycles. Significantly, the PCTRF-100 sample exhibited degradation efficiencies of 99.

View Article and Find Full Text PDF

Within the framework of surface-adsorbate interactions relevant to chemical reactions of spent nuclear fuel, the study of actinide oxide systems remains one of the most challenging tasks at both the experimental and computational levels. Consequently, our understanding of the effect of their unique electronic configurations on surface reactions lags behind that of d-block oxides. To investigate the surface properties of this system, we present the first infrared spectroscopy analysis of carbon monoxide (CO) interaction with a monocrystalline actinide oxide, UO(111).

View Article and Find Full Text PDF

Nonvolatile Magnonics in Bilayer Magnetic Insulators.

Nano Lett

January 2025

Smart Ferroic Materials Center, Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States.

Nonvolatile control of spin order or spin excitations offers a promising avenue for advancing spintronics; however, practical implementation remains challenging. In this Letter, we propose a general framework to realize electrical control of magnons in 2D magnetic insulators. We demonstrate that in bilayer ferromagnetic insulators with strong spin-layer coupling, the electric field can effectively manipulate the spin exchange interactions between the layers, enabling nonvolatile control of the corresponding magnons.

View Article and Find Full Text PDF

Conductive hydrogels are an appealing class of "smart" materials with great application potential, as they combine the stimuli-responsiveness of hydrogels with the conductivity of magnetic fillers. However, fabricating multifunctional conductive hydrogels that simultaneously exhibit conductivity, self-healing, adhesiveness, and anti-freezing properties remains a significant challenge. To address this issue, we introduce here a freeze-thawing approach to develop versatile, multiresponsive composite cryogels able to preserve their features under low-temperature conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!