Electrode materials with high conductivity, strong chemisorption, and catalysis toward polysulfides are recognized as key factors for metal-sulfur batteries. Nevertheless, the construction of such functional material is a challenge for room-temperature sodium-sulfur (RT-Na/S) batteries. Herein, a multiregion Janus-featured CoP-Co structure obtained sequential carbonization-oxidation-phosphidation of heteroseed zeolitic imidazolate frameworks is introduced. The structural virtues include a heterostructure existing in a CoP-Co structure and a conductive network of N-doped porous carbon nanotube hollow cages (NCNHCs), endowing it with superior conductivity in both the short- and long-range and strong polarity toward polysulfides. Thus, the S@CoP-Co/NCNHC cathode exhibits superior electrochemical performance (448 mAh g remained for 700 times cycling under 1 A g) and an optimized redox mechanism in polysulfides conversion. Density functional theory calculations present that the CoP-Co structure optimizes bond structure and bandwidth, whereas the pure CoP is lower than the corresponding Fermi level, which could essentially benefit the adsorptive capability and charge transfer from the CoP-Co surface to NaS and therefore improve its affinity to polysulfides.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.0c03737DOI Listing

Publication Analysis

Top Keywords

cop-co structure
12
multiregion janus-featured
8
room-temperature sodium-sulfur
8
janus-featured cobalt
4
cobalt phosphide-cobalt
4
phosphide-cobalt composite
4
composite highly
4
highly reversible
4
reversible room-temperature
4
sodium-sulfur batteries
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!