In this paper, we introduce an iterative scheme for phase demodulation of interferograms with nonuniformly spaced phase shifts. Our proposal consists of two stages: first, the phase map is obtained through a least squares fitting; second, the phase steps are retrieved using a statistical robust estimator. In particular, we use Tukey's biweighted M-estimator because it can cope with both noisy data and outliers in comparison with the ordinary least squares estimator. Furthermore, we provide the frequency description of the algorithm and the phase demodulation allowing us to analyze the procedure and estimation according to the frequency transfer function (FTF) formalism for phase-shifting algorithms. Results show that our method can accurately retrieve the phase map and phase shifts, and it converges by the 10th iteration.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.393153DOI Listing

Publication Analysis

Top Keywords

phase demodulation
12
phase
8
demodulation interferograms
8
phase shifts
8
phase map
8
tukey's robust
4
robust m-estimator
4
m-estimator phase
4
interferograms nonuniform
4
nonuniform shifts
4

Similar Publications

A parallel Hilbert transform arctangent phase demodulation (PHT-ATAN) method based on overlapping computation is proposed for phase demodulation of laser heterodyne Doppler vibrometers. The method suppresses the end point effects by utilizing overlapping computation and data concatenation and accelerates phase demodulation through parallel processing. Simulation and experimental results demonstrate that when the algorithm's parallelism is ≥4, the computation speed of this method increases by over 100% compared to traditional methods, while maintaining the signal-to-noise ratio and accuracy of the phase demodulation results.

View Article and Find Full Text PDF

A recent advancement in distributed sensing known as the time-expanded phase-sensitive optical time-domain reflectometry (TE Φ-OTDR) addresses the trade-off between spatial resolution and detection bandwidth, enabling centimeter-scale resolution alongside RF detection bandwidth in the order of MHz. To date, TE Φ-OTDR approaches extract the fiber response from the first Nyquist zone (NZ). In this Letter, we propose a post-processing strategy to enhance the SNR by spectrally averaging different NZs.

View Article and Find Full Text PDF

Identification and correction of phase delay errors for hemispherical resonator gyroscopes.

Sci Rep

January 2025

Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin, 150080, Heilongjiang, China.

The phase-delay error of the circuit system is the primary source of the output error observed in the hemispherical resonator gyroscope (HRG). Additionally, the temperature-dependent nature of the phase-delay error results in a deterioration of the initial calibration parameters, which, in turn, significantly impairs the performance of the gyroscope in its intended application. This paper proposes a self-calibration method to effectively suppress the impact of phase-delay error on the application performance of gyroscopes.

View Article and Find Full Text PDF

Ppb-Level Photoacoustic Detection of Chloroform Using Four-Microphone Array.

Anal Chem

January 2025

International Joint Laboratory for Integrated Circuits Design and Application, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.

The photoacoustic spectroscopy (PAS) system commonly enhances the efficiency of optical-acoustic-electrical energy conversion by increasing the laser power, optimizing the resonance characteristics of the photoacoustic cell (PAC), and improving the sensitivity of acoustic sensors. However, conventional systems using a single-microphone or a dual-microphone differential setup for point sampling of the photoacoustic signal fail to account for its spatial distribution, leading to a loss of spatial gain. Drawing on microphone array theory derived from sonar technology, this study, for the first time, presents a PAS sensing system based on a four-microphone array, which is applied to detect chloroform gas.

View Article and Find Full Text PDF

A Wide-Angle and PON Fully Polarimetric Retrodirective Array at the X Band.

Micromachines (Basel)

November 2024

Key Laboratory of Antennas and Microwave Technology, Xidian University, Xi'an 710071, China.

A new type of fully polarimetric retrodirective array (RDA) using a PON-type structure is proposed in this paper. The fully polarimetric property is the result of the proposed phase conjugation circuits, which perform phase conjugation processing on the x, y, and z polarization electric field components of the incident wave when combined with a tri-polarized antenna array. It enables the retrodirective array to receive and retransmit an arbitrary polarized incident wave.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!