The uneven background illumination and random noise will degrade the quality of the optical fringe pattern, resulting in reduced accuracy or errors in phase extraction of wavelet transform profilometry (WTP). An adaptive fringe pattern enhancement method is proposed in this paper, which can effectively solve the above problems and improve the robustness of WTP. First, a modified intrinsic time-scale decomposition (MITD) algorithm is used to decompose each row of the fringe pattern adaptively, which can obtain a set of reasonable and pure proper rotation components (PRCs) with a frequency ranging from high to low and a monotonic trend. The MITD algorithm can overcome the mode mixing problem while ensuring the completeness of decomposition. Then, based on the obtained pure PRCs, an innovative background-carrier signal-noise automatic grouping strategy is proposed. Specifically, weighted-permutation entropy (WPE) is adopted to handle noise removal, and fuzzy gray correlation analysis (FGCA) is used to separate the background and carrier signal. Finally, the desired phase information can be easily and accurately extracted from the enhanced carrier signal component by a direct wavelet ridge detection method. Both the simulation and experimental results demonstrate the effectiveness and functionality of the proposed method.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.395603DOI Listing

Publication Analysis

Top Keywords

fringe pattern
16
pattern enhancement
8
wavelet transform
8
transform profilometry
8
intrinsic time-scale
8
time-scale decomposition
8
mitd algorithm
8
carrier signal
8
adaptive carrier
4
fringe
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!