Lipidomic analyses aim for absolute quantification of lipid species profiles in biological samples. In past years, mass spectrometry (MS) methods based on high resolution accurate masses (HRAM) have increasingly been applied to identify and quantify lipid species on the MS level. This strategy requires consideration of isobaric overlaps which may also result from various adduct ions. Generally applied solvent additives favor the formation of protonated and ammoniated ions in positive ion mode, yet sodiated ions are also frequently observed. These sodiated ions interfere with protonated ions of the species of the same lipid class with two additional CH and three double bonds (Δ/ = 0.0025) and the first isotopic peak overlaps with ammoniated ions of a species with one additional CH and four double bonds (Δ/ = 0.0057). In this work, we present an algorithm based on the sodiated to protonated/ammoniated adduct ion ratios of applied internal standards to correct for these interferences. We could demonstrate that these ratios differ significantly between lipid classes but are affected by neither chain length nor number of double bonds within a lipid class. Finally, the algorithm is demonstrated for correcting human serum samples analyzed by Fourier-transform mass spectrometry (FTMS). Here, the application of sodium correction significantly reduced overestimations and misidentifications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.0c02408 | DOI Listing |
J Mass Spectrom
January 2025
Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan.
In our previous work, the sodiation of melittin, cytochrome c, and ubiquitin in a 1 mM NaOH water/methanol solution was studied by electrospray mass spectrometry. It was suggested that the α-helix is more resistant to sodiation than the β-sheet. In this study, sodiation of enhanced green fluorescent protein (EGFP) composed of a β-barrel was studied in 1% CHCOOH (AcOH) or 1 mM NaOH water/methanol solution by electrospray mass spectrometry.
View Article and Find Full Text PDFNat Commun
January 2025
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
Angew Chem Int Ed Engl
December 2024
Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China.
NaFe(PO)PO (NFPP) has been regarded as the promising cathode material for sodium-ion batteries (SIBs). However, the practical applications of NFPP are hindered by its high-volume changes, poor intrinsic electron conductivity and sluggish Na+ ions diffusion kinetics. Herein, a spray-drying and solid-state reaction method have been utilized to fabricate the spherical trace amount Mg/Cu co-doped NaFe(PO)PO (NFMCPP).
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
Aromatic organometallic complexes, such as ferrocene and the "inverse sandwich complex" [NaCp], are stabilized via charge-transfer (C-T) interactions and cation-π interactions (i.e., charge-induced dipole and charge-quadrupole interactions).
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Nano Science and Materials, Central University of Jammu, J&K, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!