Pd-Based heterogeneous catalysts have been demonstrated to be efficient in numerous heterogeneous reactions. However, the effect of the support resulting in covalent metal-support interaction (CMSI) has not been researched sufficiently. In this work, a Lewis base is modulated over MgAl-LDH to investigate the support effects and it is further loaded with Pd clusters to research the metal-support interactions. MgAl-LDH with ultra-low Pd loading (0.0779%) shows CO conversion (55.0%) and dimethyl oxalate (DMO) selectivity (93.7%) for CO oxidative coupling to DMO, which was gradually deactivated after evaluation for 20 h. To promote the stability of Pd/MgAl-LDH, Zn2+ ions were introduced into the MgAl-LDH support to strengthen the CMSI by forming Pd-Zn bonds, which further increased the adsorption energy of the Pd clusters on ZnMgAl-LDH, and this was verified by X-ray absorption fine structure (XAFS) measurements and density functional theory (DFT) calculations. The stability of the Pd/ZnMgAl-LDH catalyst could be maintained for at least 100 h. This work highlights that covalent metal-support interactions can be strengthened by forming new metal-metal bonds, which could be extended to other systems for the stabilization of noble metals over supports.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0nr02987d | DOI Listing |
ACS Cent Sci
June 2024
Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.
Directing groups guide substitution patterns in organic synthetic schemes, but little is known about pathways to control reactivity patterns, such as regioselectivity, in complex inorganic systems such as bioinorganic cofactors or extended surfaces. Interadsorbate effects are known to encode surface reactivity patterns in inorganic materials, modulating the location and binding strength of ligands. However, owing to limited experimental resolution into complex inorganic structures, there is little opportunity to resolve these effects on the atomic scale.
View Article and Find Full Text PDFJ Am Chem Soc
July 2024
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
Reactive metal-support interaction (RMSI) is an emerging way to regulate the catalytic performance for supported metal catalysts. However, the induction of RMSI by the thermal reduction is often accompanied by the encapsulation effect on metals, which limits the mechanism research and applications of RMSI. In this work, a gradient orbital coupling construction strategy was successfully developed to induce RMSI in Pt-carbide system without a reductant, leading to the formation of L1-PtM-MC (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) intermetallic electrocatalysts.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2024
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
The catalytic performance of supported metal catalysts is closely related to their structure. While Pt-based catalysts are widely used in many catalytic reactions because of their exceptional intrinsic activity, they tend to deactivate in high-temperature reactions, requiring a tedious and expensive regeneration process. The strong metal-support interaction (SMSI) is a promising strategy to improve the stability of supported metal nanoparticles, but often at the price of the activity due to either the coverage of the active sites by support overlay and/or the too-strong metal-support bonding.
View Article and Find Full Text PDFNat Commun
March 2024
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
Proc Natl Acad Sci U S A
March 2024
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China.
Organic electrodes mainly consisting of C, O, H, and N are promising candidates for advanced batteries. However, the sluggish ionic and electronic conductivity limit the full play of their high theoretical capacities. Here, we integrate the idea of metal-support interaction in single-atom catalysts with π-d hybridization into the design of organic electrode materials for the applications of lithium (LIBs) and potassium-ion batteries (PIBs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!