Binding ability of arsenate towards Cu and Zn: thermodynamic behavior and simulation under natural water conditions.

Environ Sci Process Impacts

Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.

Published: August 2020

A study on the sequestering ability between arsenate, AsO43-, and Cu2+ and Zn2+ in aqueous solution is reported. The results of the elaboration of potentiometric data include only species with 1 : 1 metal to ligand ratio for Cu2+-arsenate system, namely CuLH2, CuLH, CuL, and CuLOH (L = AsO43-). For the Zn2+-arsenate system, a speciation model with only two species with both 1 : 1 and 1 : 2 metal to ligand ratios was obtained, namely ML and ML2. Spectrophotometric titrations were also employed in the study of the Cu2+-AsO43- system, and the results of the analysis of experimental data fully confirmed potentiometric ones. The potentiometric titrations were performed under different conditions of temperature (288.15 ≤ T/K ≤ 310.15, at I = 0.15 mol L-1) and ionic strength (0.15 ≤ I/mol L-1 ≤ 1 in NaCl). The dependence of formation constants of the complex species on ionic strength and temperature was also evaluated, as well as the enthalpy and entropy change values were obtained. Laser desorption mass spectrometry (LD MS) and tandem mass spectrometry (MS/MS) were exploited to confirm Cu2+-AsO43- and Zn2+-AsO43- complex formation and to determine both their composition and structural characteristics. Simulation of speciation profiles under natural water conditions was performed. The sequestering ability of arsenate towards Cu2+ and Zn2+ was quantified under different conditions of pH, temperature and ionic strength, typical of several natural waters. Examples of arsenate distribution under seawater and freshwater conditions were reported.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0em00136hDOI Listing

Publication Analysis

Top Keywords

ability arsenate
12
ionic strength
12
natural water
8
water conditions
8
sequestering ability
8
cu2+ zn2+
8
species 1  1
8
metal ligand
8
conditions temperature
8
mass spectrometry
8

Similar Publications

A population model is presented to study the combined effects of ionising radiation and chemical pollutants on wildlife. The model is based on first order, non-linear and logistic differential equations combining mortality, morbidity and reproduction phenomena with life history data and ecological interactions. Acclimation is considered as a possible mechanism to study theoretically this effect at low levels of radiation or chemical concentration.

View Article and Find Full Text PDF

Microbes have been shown to adapt to stressful or even lethal conditions through displaying genome plasticity. However, how bacteria utilize the ability of genomic plasticity to deal with high antimony (Sb) stress has remained unclear. In this study, the spontaneous mutant strain SMAs-55 of sp.

View Article and Find Full Text PDF

Rapid on-site colorimetric detection of arsenic(V) by NH-MIL-88(Fe) nanozymes-based ultraviolet-visible spectroscopic and smartphone-assisted sensing platforms.

Anal Chim Acta

January 2025

College of Resources and Environment, Southwest University, Chongqing, 400716, China; Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China. Electronic address:

Background: Because arsenate (As(V)) is a highly toxic pollutant, timely on-site monitoring of its concentration is crucial for mitigating potential environmental and health hazards. Traditional on-site detection methods for As(V) often face limitations of long response time and low sensitivity. Nanozymes are nanomaterials that exhibit enzyme-like catalytic activity.

View Article and Find Full Text PDF

The main aim of the study was to develop new fruit waste-derived activated carbons of high adsorption performance towards metals, metalloids, and polymers by the use of carbon dioxide (CO)-consuming, microwave-assisted activation. The authors compared morphology, surface chemistry, textural parameters, and elemental composition of precursors (chokeberry seeds, black currant seeds, orange peels), as well as biochars (BCs) and activated carbons (ACs) obtained from them. The adsorption mechanisms of metals (copper, cadmium), metalloids (arsenic, selenium), and macromolecular compounds (bacterial exopolysaccharide, ionic polyacrylamides) on the surface of selected materials were investigated in one- and two-component systems.

View Article and Find Full Text PDF

Late-onset Alzheimer's disease (LOAD) is a chronic, multifactorial, and progressive neurodegenerative disease that associates with aging and is highly prevalent in our older population (≥65 years of age). This hypothesis generating this narrative review will examine the important role for the use of sodium thiosulfate (STS) as a possible multi-targeting treatment option for LOAD. Sulfur is widely available in our environment and is responsible for forming organosulfur compounds that are known to be associated with a wide range of biological activities in the brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!