A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ultraviolet-visible diffuse reflectance spectroscopy combined with chemometrics for rapid discrimination of Angelicae Sinensis Radix from its four similar herbs. | LitMetric

Ultraviolet-visible diffuse reflectance spectroscopy combined with chemometrics for rapid discrimination of Angelicae Sinensis Radix from its four similar herbs.

Anal Methods

Department of Analytical Chemistry, Institute for Molecules and Materials (IMM), Radboud University, 6500 GL Nijmegen, The Netherlands.

Published: July 2020

Ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) combined with chemometrics was used for the first time to differentiate Angelicae Sinensis Radix (ASR) from four other similar herbs (either from the same genus or of similar appearance). A total of 191 samples, including 40 ASR, 39 Angelicae Pubescentis Radix (APR), 38 Chuanxiong Rhizoma (CR), 35 Atractylodis Macrocephalae Rhizoma (AMR) and 39 Angelicae Dahuricae Radix (ADR), were collected and divided into the training and prediction sets. Principal component analysis (PCA) was used for observing the sample cluster tendency of the calibration set. Different preprocessing methods were investigated and the optimal preprocessing combination was selected according to spectral signal characteristics and three-dimensional PCA (3D PCA) clustering results. The final discriminant model was built using extreme learning machine (ELM). The exploratory studies on the raw spectra and their 3D PCA scores indicate that the classification of the five herbs cannot be achieved by PCA of the raw spectra. Autoscaling, continuous wavelet transform (CWT) and Savitzky-Golay (SG) smoothing can improve the clustering results to different degrees. Furthermore, their combination in the order of CWT + autoscaling + SG smoothing can enhance the spectral resolution and obtain the best clustering result. These results are also validated using ELM models of raw and different preprocessing methods. By using CWT + autoscaling + SG smoothing + ELM, 100% classification accuracy can be achieved in both the calibration set and the prediction set. Therefore, the developed method could be used as a rapid, economic and effective method for discriminating the five herbs used in this study.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0ay00285bDOI Listing

Publication Analysis

Top Keywords

ultraviolet-visible diffuse
8
diffuse reflectance
8
reflectance spectroscopy
8
combined chemometrics
8
angelicae sinensis
8
sinensis radix
8
calibration set
8
preprocessing methods
8
raw spectra
8
cwt autoscaling
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!