We demonstrate low-loss and broadband light transition from III-V functional layers to a Si platform via two-stage adiabatic-crossing coupler waveguides. A 900-µm-long and 2.7-µm-thick III-V film waveguide consisting of a GaInAsP core and InP cladding layers is transferred onto an air-cladding Si photonic chip by the µ-transfer printing (µ-TP) method. An average optical coupling loss per joint of 1.26 dB is obtained in C + L telecommunication bands (1530-1635 nm). The correlation between alignment offset and measured optical coupling loss is discussed with the frequency distribution of µ-TP samples. We also performed a photoluminescence measurement to investigate the material properties in the GaInAsP layer to see if they are distorted by the strong bending stress produced during the pick-up and print steps of the µ-TP process. The peak intensity reduction of 80-90% and a wavelength shift of 0-5 nm (blue shift) were observed after the process. The series of fundamental studies presented here, which combine multiple analyses, contribute to improving our understanding of III-V/Si photonic integration by µ-TP.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.394492DOI Listing

Publication Analysis

Top Keywords

light transition
8
µ-transfer printing
8
optical coupling
8
coupling loss
8
inter-layer light
4
transition hybrid
4
hybrid iii-v/si
4
iii-v/si waveguides
4
waveguides integrated
4
integrated µ-transfer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!