High resolution, real-time three-dimensional (3D) measurement plays an important role in many fields. In this paper, a multi-directional dynamic real-time phase measurement profilometry based on improved optical flow is proposed. In a five-step phase shifting dynamic measurement, pixel matching is needed to make the pixels one-to-one corresponding in five patterns. However, in the frequently-used pixel matching method at present, it is necessary to calculate the correlation and traverse the whole deformed pattern for the motion information of the measured object. The huge amount of computation caused by correlation computation takes up most of the time in the process of the entire 3D reconstruction, so it can not meet the requirement of real-time dynamic measurement. In order to solve the problem, the improved optical flow algorithm is introduced to replace correlation calculation in pixel matching. In one measurement, five captured patterns need to be dealt with, and the optical flow between each two adjacent frames is calculated. Then four two-dimensional vector matrices can be obtained. The vector matrices contain the complete motion information of the measured object. Experiments and simulations prove that this method can improve the efficiency of pixel matching by 42 times and 3D reconstruction by 32 times on the premise of ensuring the accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.394691DOI Listing

Publication Analysis

Top Keywords

optical flow
16
pixel matching
16
improved optical
12
based improved
8
dynamic measurement
8
motion measured
8
measured object
8
vector matrices
8
measurement
5
fast measurement
4

Similar Publications

Gastrointestinal tract-related cancers pose a significant health burden, with high mortality rates. In order to detect the anomalies of the gastrointestinal tract that may progress to cancer, a video capsule endoscopy procedure is employed. The number of video capsule endoscopic ( ) images produced per examination is enormous, which necessitates hours of analysis by clinicians.

View Article and Find Full Text PDF

Dual-Modality Flow Phantom for Ultrasound and Optical Flow Measurements.

Phys Med Biol

January 2025

Schlegel Research Institute for Aging, University of Waterloo, 250 Laurelwood Drive, Waterloo, Ontario, N2L 3G1, CANADA.

As ultrasound-compatible flow phantoms are devised for performance testing and calibration, there is a practical need to obtain independent flow measurements for validation using a gold-standard technique such as particle image velocimetry (PIV). In this paper, we present the design of a new dual-modality flow phantom that allows ultrasound and PIV measurements to be simultaneously performed. Our phantom's tissue mimicking material is based on a novel hydrogel formula that uses propylene glycol to lower the freezing temperature of an ultrasound-compatible poly(vinyl) alcohol cryogel and, in turn, maintain the solution's optical transparency after thermocycling.

View Article and Find Full Text PDF

Optical Coherence Tomography Angiography findings in Syphilitic Outer Retinitis.

Retin Cases Brief Rep

December 2024

Department of Ophthalmology, Hospital de Clínicas, University of Buenos Aires, Buenos Aires, Argentina.

Purpose: to report optical coherence tomography angiography findings in syphilitic outer retinopathy, a singular clinical manifestation of ocular syphilis.

Methods: case report.

Results: Multimodal imaging including optical coherence tomography angiography was performed in a patient presenting syphilitic outer retinopathy.

View Article and Find Full Text PDF

Current study presents an advanced method for improving the visualization of subsurface blood vessels using laser speckle contrast imaging (LSCI), enhanced through principal component analysis (PCA) filtering. By combining LSCI and laser speckle entropy imaging with PCA filtering, the method effectively separates static and dynamic components of the speckle signal, significantly improving the accuracy of blood flow assessments, even in the presence of static scattering layers located above and below the vessel. Experiments conducted on optical phantoms, with the vessel depths ranging from 0.

View Article and Find Full Text PDF

MIL-53(Al)-derived bimetallic Pd-Co catalysts for the selective hydrogenation of 1,3-butadiene at low temperature.

Sci Rep

January 2025

School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang, 261061, China.

Selective hydrogenation of 1,3-butadiene is a crucial industrial process for the removing of 1,3-butadiene, a byproduct of butene production. Developing catalysts with high catalytic performance for the hydrogenation of 1,3-butadiene at low temperatures has become a research hotspot. In this study, bimetallic Pd-Co catalysts supported on AlO derived from MIL-53(Al) at various calcination temperatures were synthesised via the co-impregnation method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!