Phosphorylation of 5-LOX: The Potential Set-point of Inflammation.

Neurochem Res

Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China.

Published: October 2020

Inflammation secondary to tissue injuries serves as a double-edged sword that determines the prognosis of tissue repair. As one of the most important enzymes controlling the inflammation process by producing leukotrienes, 5-lipoxygenase (5-LOX, also called 5-LO) has been one of the therapeutic targets in regulating inflammation for a long time. Although a large number of 5-LOX inhibitors have been explored, only a few of them can be applied clinically. Surprisingly, phosphorylation of 5-LOX reveals great significance in regulating the subcellular localization of 5-LOX, which has proven to be an important mechanism underlying the enzymatic activities of 5-LOX. There are at least three phosphorylation sites in 5-LOX jointly to determine the final inflammatory outcomes, and adjustment of phosphorylation of 5-LOX at different phosphorylation sites brings hope to provide an unrecognized means to regulate inflammation. The present review intends to shed more lights into the set-point-like mechanisms of phosphorylation of 5-LOX and its possible clinical application by summarizing the biological properties of 5-LOX, the relationship of 5-LOX with neurodegenerative diseases and brain injuries, the phosphorylation of 5-LOX at different sites, the regulatory effects and mechanisms of phosphorylated 5-LOX upon inflammation, as well as the potential anti-inflammatory application through balancing the phosphorylation-depended set-point.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-020-03090-3DOI Listing

Publication Analysis

Top Keywords

phosphorylation 5-lox
20
5-lox
12
phosphorylation sites
8
phosphorylation
7
inflammation
6
5-lox potential
4
potential set-point
4
set-point inflammation
4
inflammation inflammation
4
inflammation secondary
4

Similar Publications

Introduction: Pancreatic tumors and cell lines derived from them exhibit elevated expression of 5-lipoxygenase (5-Lox), whereas non-tumor glands or normal cells do not exhibit this overexpression. Arachidonic acid stimulates pancreatic cancer cell growth via metabolic conversion through the 5-Lox pathway, and inhibition of 5-Lox activity decreases the viability of pancreatic cancer cells. However, the downstream signaling mechanisms through which 5-Lox exerts its effects on the survival of pancreatic cancer cells remain to be elucidated.

View Article and Find Full Text PDF

LXA4 protected mice from renal ischemia/reperfusion injury by promoting IRG1/Nrf2 and IRAK-M-TRAF6 signal pathways.

Clin Immunol

April 2024

Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China; Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China. Electronic address:

Excessive inflammatory response and increased oxidative stress play an essential role in the pathophysiology of ischemia/reperfusion (I/R)-induced acute kidney injury (IRI-AKI). Emerging evidence suggests that lipoxin A4 (LXA4), as an endogenous negative regulator in inflammation, can ameliorate several I/R injuries. However, the mechanisms and effects of LXA4 on IRI-AKI remain unknown.

View Article and Find Full Text PDF

Phospholipases (PL) A catalyzes the hydrolysis of membrane phospholipids and mostly generates arachidonic acid (AA). The enzyme 5-lipoxygenase (5-LOX) can metabolize AA to obtain inflammatory leukotrienes, whose biosynthesis highly depends on cPLA2 and 5-LOX activities. Formyl Peptide Receptor 2 (FPR2) belongs to a subfamily of class A GPCRs and is considered the most versatile FPRs isoform.

View Article and Find Full Text PDF

Caffeic acid modulates activation of neutrophils and attenuates sepsis-induced organ injury by inhibiting 5-LOX/LTB4 pathway.

Int Immunopharmacol

December 2023

Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China; Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, People's Republic of China; Faculty of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People's Republic of China. Electronic address:

Background: Sepsis is a critical systemic inflammatory syndrome which usually leads to multiple organ dysfunction. Caffeic acid (CA), a phenolic compound derived from various plants, has been proved to be essential in neuroprotection, but its role in septic organ damage is unclear. This research aimed to investigate whether CA protects against organ injury in a mouse model of cecal ligation and puncture (CLP).

View Article and Find Full Text PDF

Hepatocellular carcinoma progression promoted by 5-lipoxygenase activity in CD163(+) tumor-associated macrophages.

Biomed Pharmacother

June 2023

Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan. Electronic address:

Arachidonic acid 5-lipoxygenase (5-LOX), an enzyme that synthesizes leukotrienes (LTs), is involved in cancer development including proliferation, invasion, metastasis and drug resistance. However, the functional role of 5-LOX in hepatocellular carcinoma (HCC) remains to be elucidated. In this study, we analyzed the contribution of 5-LOX in HCC progression and investigated the potential of targeted therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!