Over the years, surgical strategies have been developed in hope of full regeneration of the injured cartilage. In our study, we aimed to develop an optimized chondrocyte culture isolation technique as an active ingredient of a standardized autologous chondrocte implantation product, which is able to maintain the phenotype along with the molecular features of the cartilage. We compared different enzymes, which suggested optimal performance with collagenase type II at 5 mg/ml concentration. Thereafter, we observed that COL2 and GAG expression is substantially reduced with passaging. There was a need to omit passaging to reach the optimal isolation method. We then tested various growth factors and media in order to maintain the natural character of chondrocytes. Our study also suggested the highest COL2 and GAG expressions with the highest recovery in the presence of Advanced DMEM. Autologous chondrocyte implantation manufacturing approval was recently received from the national competent authority, making it possible to utilize the process engineering protocol developed with this study at our Tissue and Cell Manufacturing Center as a part of the autologous chondrocyte implantation manufacturing standard operation procedure (SOP).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10561-020-09847-y | DOI Listing |
Gels
January 2025
Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea.
Articular cartilage faces challenges in self-repair due to the lack of blood vessels and limited chondrocyte concentration. Polydeoxyribonucleotide (PDRN) shows promise for promoting chondrocyte growth and cartilage regeneration, but its delivery has been limited to injections. Continuous PDRN delivery is crucial for effective cartilage regeneration.
View Article and Find Full Text PDFInt J Mol Sci
August 2024
Department of Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany.
Curr Stem Cell Res Ther
May 2024
Department of Orthopaedics, Warren Alpert Medical School of Brown University, Providence, RI, 02903, United States.
Introduction: Kartogenin (KGN) is a synthetic small molecule that stimulates chondrogenic cellular differentiation by activating smad-4/5 pathways. KGN has been proposed as a feasible alternative to expensive biologic growth factors, such as transforming growth factor β, which remain under strict regulatory scrutiny when it comes to use in patients.
Method: This study reports the previously unexplored effects of KGN stimulation on cartilage- derived mesenchymal progenitor cells (CPCs), which have been shown to be effective in applications of cell-based musculoskeletal tissue regeneration.
Heliyon
January 2024
Key Lab of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, No.1 Northwest Xin Cun, Chengguan District, Lanzhou, 7300030, China.
Temporomandibular joint discs (TMJ discs) are unable to repair themselves in disease states, while induced stem cell differentiation is a common method to repair tissue defects. Nowadays, kinds of stem cells are attempted for tissue regeneration of TMJ disc, but these methods have several downsides, which limit their wide application. The proliferation and differentiation ability of human induced pluripotent stem cells (hiPSC) provides a new research direction for TMJ disc tissue regeneration.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2023
AO Research Institute Davos, Davos, Switzerland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!