X-linked adrenoleukodystrophy (ALD) is a peroxisomal metabolic disorder with a highly complex clinical presentation. ALD is caused by mutations in the gene, and is characterized by the accumulation of very long-chain fatty acids in plasma and tissues. Disease-causing mutations are 'loss of function' mutations, with no prognostic value with respect to the clinical outcome of an individual. All male patients with ALD develop spinal cord disease and a peripheral neuropathy in adulthood, although age of onset is highly variable. However, the lifetime prevalence to develop progressive white matter lesions, termed cerebral ALD (CALD), is only about 60%. Early identification of transition to CALD is critical since it can be halted by allogeneic hematopoietic stem cell therapy only in an early stage. The primary goal of this study is to identify molecular markers which may be prognostic of cerebral demyelination from a simple blood sample, with the hope that blood-based assays can replace the current protocols for diagnosis. We collected six well-characterized brother pairs affected by ALD and discordant for the presence of CALD and performed multi-omic profiling of blood samples including genome, epigenome, transcriptome, metabolome/lipidome, and proteome profiling. In our analysis we identify discordant genomic alleles present across all families as well as differentially abundant molecular features across the omics technologies. The analysis was focused on univariate modeling to discriminate the two phenotypic groups, but was unable to identify statistically significant candidate molecular markers. Our study highlights the issues caused by a large amount of inter-individual variation, and supports the emerging hypothesis that cerebral demyelination is a complex mix of environmental factors and/or heterogeneous genomic alleles. We confirm previous observations about the role of immune response, specifically auto-immunity and the potential role of PFN1 protein overabundance in CALD in a subset of the families. We envision our methodology as well as dataset has utility to the field for reproducing previous or enabling future modifier investigations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7330173 | PMC |
http://dx.doi.org/10.3389/fcell.2020.00520 | DOI Listing |
Brain Imaging Behav
January 2025
Macquarie Medical School, Macquarie University, Sydney, NSW, Australia.
Magnetic resonance imaging (MRI) is frequently used to monitor disease progression in multiple sclerosis (MS). This study aims to systematically evaluate the correlation between MRI measures and histopathological changes, including demyelination, axonal loss, and gliosis, in the central nervous system of MS patients. We systematically reviewed post-mortem histological studies evaluating myelin density, axonal loss, and gliosis using quantitative imaging in MS.
View Article and Find Full Text PDFeNeuro
January 2025
Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
Axons in the mammalian brain show significant diversity in myelination motifs, displaying spatial heterogeneity in sheathing along individual axons and across brain regions. However, its impact on neural signaling and susceptibility to injury remains poorly understood. To address this, we leveraged cable theory and developed model axons replicating the myelin sheath distributions observed experimentally in different regions of the mouse central nervous system.
View Article and Find Full Text PDFFront Mol Neurosci
January 2025
Neurology Clinic, Military Institute of Medicine- National Research Institute, Warsaw, Poland.
Multiple sclerosis (MS) is a chronic central nervous system (CNS) disease with demyelinating inflammatory characteristics. It is the most common nontraumatic and disabling disease affecting young adults. The incidence and prevalence of MS have been increasing.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Neurology, Christian-Doppler University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria.
Intrathecal immunoglobulin A (IgA) synthesis in multiple sclerosis (MS) has long earned little attention, despite a potential significance in disease pathogenesis and prognosis. The presence of IgA-positive plasma cells in MS lesions and along damaged axons suggests a role in disease pathogenesis. Available clinical evidence about a potential positive or negative prognostic role is scarce and inconclusive.
View Article and Find Full Text PDFJ Neurol
January 2025
Department of Neurology, University of Chicago, 5841 South Maryland Avenue, Chicago, IL, 60637, USA.
Positional downbeat nystagmus (pDBN) is a common finding in dizzy patients, with etiologies ranging from benign paroxysmal positional vertigo (BPPV) to central vestibular lesions. Although peripheral pDBN often presents with distinct clinical features that differentiate it from BPPV, diagnosing its etiology can be challenging. A thorough clinical evaluation, including the physical characteristics of the nystagmus, response to positional maneuvers, and neurological findings, is often sufficient to diagnose conditions that provoke pDBN such as anterior canal BPPV, atypical posterior canal BPPV, and central causes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!