Retinal pigment epithelial (RPE) cells maintain the health and functional integrity of both photoreceptors and the choroidal vasculature. Loss of RPE differentiation has long been known to play a critical role in numerous retinal diseases, including inherited rod-cone degenerations, inherited macular degeneration, age-related macular degeneration, and proliferative vitreoretinopathy. Recent studies in post-mortem eyes have found upregulation of critical epithelial-mesenchymal transition (EMT) drivers such as TGF-β, Wnt, and Hippo. As RPE cells become less differentiated, they begin to exhibit the defining characteristics of mesenchymal cells, namely, the capacity to migrate and proliferate. A number of preclinical studies, including animal and cell culture experiments, also have shown that RPE cells undergo EMT. Taken together, these data suggest that RPE cells retain the reprogramming capacity to move along a continuum between polarized epithelial cells and mesenchymal cells. We propose that movement along this continuum toward a mesenchymal phenotype be defined as Potential mechanisms include impaired tight junctions, accumulation of misfolded proteins and dysregulation of several key pathways and molecules, such as TGF-β pathway, Wnt pathway, nicotinamide, microRNA 204/211 and extracellular vesicles. This review synthesizes the evidence implicating EMT of RPE cells in post-mortem eyes, animal studies, primary RPE, iPSC-RPE and ARPE-19 cell lines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329994PMC
http://dx.doi.org/10.3389/fcell.2020.00501DOI Listing

Publication Analysis

Top Keywords

rpe cells
20
epithelial-mesenchymal transition
8
retinal pigment
8
cells
8
macular degeneration
8
post-mortem eyes
8
mesenchymal cells
8
rpe
7
role epithelial-mesenchymal
4
transition retinal
4

Similar Publications

RAD18 is a conserved eukaryotic E3 ubiquitin ligase that promotes genome stability through multiple pathways. One of these is gap-filling DNA synthesis at active replication forks and in post-replicative DNA. RAD18 also regulates homologous recombination (HR) repair of DNA breaks; however, the current literature describing the contribution of RAD18 to HR in mammalian systems has not reached a consensus.

View Article and Find Full Text PDF

Screening of a retinal-targeting Adeno-Associated Virus (AAV) via DNA shuffling.

Exp Eye Res

January 2025

Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215000, China; Key Laboratory of Geriatric Diseases and Immunology, Ministry of Education, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China. Electronic address:

Due to its unique physiological structure and functions, the eye has received considerable attention in the field of adeno-associated virus (AAV) gene therapy. Inherited retinal degenerative diseases, which arise from pathogenic mutations in mRNA transcripts expressed in the eye's photoreceptor cells or retinal pigment epithelium (RPE), are the most common cause of vision loss. However, current retinal gene therapy mostly involves subretinal injection of therapeutic genes, which treats a limited area, entails retinal detachment, and requires sophisticated techniques.

View Article and Find Full Text PDF

Astragaloside IV inhibits retinal pigment epithelial cell senescence and reduces IL-1β mRNA stability by targeting FTO-mediated mA methylation.

Phytomedicine

January 2025

School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China. Electronic address:

Background: Resistance to senescence in retinal pigment epithelial (RPE) cells can delay the progression of age-related macular degeneration (AMD). However, the mechanisms underlying RPE cell senescence remain inadequately understood, and effective therapeutic strategies are lacking. While astragaloside IV (Ast) has demonstrated anti-aging properties, its specific effects on RPE cell senescence and potential mechanisms are not yet fully clarified.

View Article and Find Full Text PDF

Amyloid β (Aβ) has emerged as a pathophysiological driver in age-related macular degeneration (AMD), emphasizing its significance in the aetiology of this prevalent sight-threatening condition. The multifaceted nature of AMD pathophysiology, presumably involving diverse retinal cascades, corresponds with the complexity of Aβ-induced retinopathy. Therefore, targeting a broad array of pathogenic processes holds promise for therapeutic intervention in AMD-associated retinal pathology.

View Article and Find Full Text PDF

Distributed representations of temporally accumulated reward prediction errors in the mouse cortex.

Sci Adv

January 2025

Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore.

Reward prediction errors (RPEs) quantify the difference between expected and actual rewards, serving to refine future actions. Although reinforcement learning (RL) provides ample theoretical evidence suggesting that the long-term accumulation of these error signals improves learning efficiency, it remains unclear whether the brain uses similar mechanisms. To explore this, we constructed RL-based theoretical models and used multiregional two-photon calcium imaging in the mouse dorsal cortex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!