trying...
32670886 2024 07 30 2234-943X 10 2020 Frontiers in oncology Front Oncol Toward Systems Biomarkers of Response to Immune Checkpoint Blockers. 1027 1027 1027 10.3389/fonc.2020.01027 Immunotherapy with checkpoint blockers (ICBs), aimed at unleashing the immune response toward tumor cells, has shown a great improvement in overall patient survival compared to standard therapy, but only in a subset of patients. While a number of recent studies have significantly improved our understanding of mechanisms playing an important role in the tumor microenvironment (TME), we still have an incomplete view of how the TME works as a whole. This hampers our ability to effectively predict the large heterogeneity of patients' response to ICBs. Systems approaches could overcome this limitation by adopting a holistic perspective to analyze the complexity of tumors. In this Mini Review, we focus on how an integrative view of the increasingly available multi-omics experimental data and computational approaches enables the definition of new systems-based predictive biomarkers. In particular, we will focus on three facets of the TME toward the definition of new systems biomarkers. First, we will review how different types of immune cells influence the efficacy of ICBs, not only in terms of their quantification, but also considering their localization and functional state. Second, we will focus on how different cells in the TME interact, analyzing how inter- and intra-cellular networks play an important role in shaping the immune response and are responsible for resistance to immunotherapy. Finally, we will describe the potential of looking at these networks as dynamic systems and how mathematical models can be used to study the rewiring of the complex interactions taking place in the TME. Copyright © 2020 Lapuente-Santana and Eduati. Lapuente-Santana Óscar Ó Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands. Eduati Federica F Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands. Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands. eng Journal Article Review 2020 06 24 Switzerland Front Oncol 101568867 2234-943X cancer signaling networks immune checkpoint blockers multi-omics profiling precision immuno-oncology predictive biomarkers systems biology tumor microenvironment 2020 1 30 2020 5 22 2020 7 17 6 0 2020 7 17 6 0 2020 7 17 6 1 2020 1 1 epublish 32670886 PMC7326813 10.3389/fonc.2020.01027 Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol. (2018) 62:29–39. 10.1016/j.intimp.2018.06.001 10.1016/j.intimp.2018.06.001 29990692 Sun C, Mezzadra R, Schumacher TN. Regulation and function of the PD-L1 checkpoint. Immunity. (2018) 48:434–52. 10.1016/j.immuni.2018.03.014 10.1016/j.immuni.2018.03.014 PMC7116507 29562194 Boutros C, Tarhini A, Routier E, Lambotte O, Ladurie FL, Carbonnel F, et al. . Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat Rev Clin Oncol. (2016) 13:473–86. 10.1038/nrclinonc.2016.58 10.1038/nrclinonc.2016.58 27141885 Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. New Engl J Med. (2018) 378:158–68. 10.1056/NEJMra1703481 10.1056/NEJMra1703481 29320654 Schmidt C. The benefits of immunotherapy combinations. Nature. (2017) 552:S67–9. 10.1038/d41586-017-08702-7 10.1038/d41586-017-08702-7 29293245 Arora S, Velichinskii R, Lesh RW, Ali U, Kubiak M, Bansal P, et al. . Existing and emerging biomarkers for immune checkpoint immunotherapy in solid tumors. Adv Ther. (2019) 36:2638–78. 10.1007/s12325-019-01051-z 10.1007/s12325-019-01051-z PMC6778545 31410780 Le DT, Uram JN, Wang H, Bartlett B, Kemberling H, Eyring A, et al. . PD-1 blockade in tumors with mismatch repair deficiency. N Engl J Med. (2015) 372:2509–20. 10.1056/NEJMoa1500596 10.1056/NEJMoa1500596 PMC4481136 26028255 Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. . Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. (2017) 357:409–13. 10.1126/science.aan6733 10.1126/science.aan6733 PMC5576142 28596308 Legrand FA, Gandara DR, Mariathasan S, Powles T, He X, Zhang W, et al. Association of high tissue TMB and atezolizumab efficacy across multiple tumor types. J Clin Oncol. (2018) 36(Suppl. 15):12000 10.1200/JCO.2018.36.15_suppl.12000 10.1200/JCO.2018.36.15_suppl.12000 Ott PA, Bang Y-J, Piha-Paul SA, Abdul Razak AR, Bennouna J, Soria J-C, et al. . T-cell–inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J Clin Oncol. (2019) 37:318–27. 10.1200/JCO.2018.78.2276 10.1200/JCO.2018.78.2276 30557521 Cristescu R, Mogg R, Ayers M, Albright A, Murphy E, Yearley J, et al. . Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science. (2018) 362:eaar3593. 10.1126/science.aar3593 10.1126/science.aar3593 PMC6718162 30309915 Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. . Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science. (2015) 348:124–8. 10.1126/science.aaa1348 10.1126/science.aaa1348 PMC4993154 25765070 Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, et al. . Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. (2015) 350:207–11. 10.1126/science.aad0095 10.1126/science.aad0095 PMC5054517 26359337 Lu T, Wang S, Xu L, Zhou Q, Singla N, Gao J, et al. . Tumor neoantigenicity assessment with CSiN score incorporates clonality and immunogenicity to predict immunotherapy outcomes. Sci Immunol. (2020) 5:aaz3199. 10.1126/sciimmunol.aaz3199 10.1126/sciimmunol.aaz3199 PMC7239327 32086382 Page DB, Yuan J, Redmond D, Wen YH, Durack JC, Emerson R, et al. . Deep sequencing of T-cell receptor DNA as a biomarker of clonally expanded TILs in breast cancer after immunotherapy. Cancer Immunol Res. (2016) 4:835–44. 10.1158/2326-6066.CIR-16-0013 10.1158/2326-6066.CIR-16-0013 PMC5064839 27587469 Sims JS, Grinshpun B, Feng Y, Ung TH, Neira JA, Samanamud JL, et al. . Diversity and divergence of the glioma-infiltrating T-cell receptor repertoire. Proc Natl Acad Sci USA. (2016) 113:E3529–37. 10.1073/pnas.1601012113 10.1073/pnas.1601012113 PMC4922177 27261081 Cui JH, Lin KR, Yuan SH, Jin YB, Chen XP, Su XK, et al. . TCR Repertoire as a novel indicator for immune monitoring and prognosis assessment of patients with cervical cancer. Front Immunol. (2018) 9:2729. 10.3389/fimmu.2018.02729 10.3389/fimmu.2018.02729 PMC6262070 30524447 Farmanbar A, Kneller R, Firouzi S. RNA sequencing identifies clonal structure of T-cell repertoires in patients with adult T-cell leukemia/lymphoma. NPJ Genom Med. (2019) 4:10. 10.1038/s41525-019-0084-9 10.1038/s41525-019-0084-9 PMC6502857 31069115 Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer. (2019) 19:133–50. 10.1038/s41568-019-0116-x 10.1038/s41568-019-0116-x PMC6705396 30755690 Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. (2016) 16:275–87. 10.1038/nrc.2016.36 10.1038/nrc.2016.36 PMC5381938 27079802 Camidge DR, Doebele RC, Kerr KM. Comparing and contrasting predictive biomarkers for immunotherapy and targeted therapy of NSCLC. Nat Rev Clin Oncol. (2019) 16:341–55. 10.1038/s41571-019-0173-9 10.1038/s41571-019-0173-9 30718843 Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. . Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. (2014) 371:2189–99. 10.1056/NEJMoa1406498 10.1056/NEJMoa1406498 PMC4315319 25409260 Keenan TE, Burke KP, Van Allen EM. Genomic correlates of response to immune checkpoint blockade. Nat Med. (2019) 25:389–402. 10.1038/s41591-019-0382-x 10.1038/s41591-019-0382-x PMC6599710 30842677 Finotello F, Rieder D, Hackl H, Trajanoski Z. Next-generation computational tools for interrogating cancer immunity. Nat Rev Genet. (2019) 20:724–46. 10.1038/s41576-019-0166-7 10.1038/s41576-019-0166-7 31515541 Duffy MJ, Crown J. Biomarkers for predicting response to immunotherapy with immune checkpoint inhibitors in cancer patients. Clin Chem. (2019) 65:1228–38. 10.1373/clinchem.2019.303644 10.1373/clinchem.2019.303644 31315901 Finotello F, Eduati F. Multi-omics profiling of the tumor microenvironment: paving the way to precision immuno-oncology. Front Oncol. (2018) 8:430. 10.3389/fonc.2018.00430 10.3389/fonc.2018.00430 PMC6182075 30345255 Fridman WH, Zitvogel L, Sautès-Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. (2017) 14:717–34. 10.1038/nrclinonc.2017.101 10.1038/nrclinonc.2017.101 28741618 Finotello F, Trajanoski Z. Quantifying tumor-infiltrating immune cells from transcriptomics data. Cancer Immunol Immunother. (2018) 67:1031–40. 10.1007/s00262-018-2150-z 10.1007/s00262-018-2150-z PMC6006237 29541787 Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. (2019) 18:197–218. 10.1038/s41573-018-0007-y 10.1038/s41573-018-0007-y 30610226 Giraldo NA, Becht E, Pagès F, Skliris G, Verkarre V, Vano Y, et al. . Orchestration and prognostic significance of immune checkpoints in the microenvironment of primary and metastatic renal cell cancer. Clin Cancer Res. (2015) 21:3031–40. 10.1158/1078-0432.CCR-14-2926 10.1158/1078-0432.CCR-14-2926 25688160 Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, et al. . Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. (2006) 313:1960–64. 10.1126/science.1129139 10.1126/science.1129139 17008531 Pagès F, Mlecnik B, Marliot F, Bindea G, Ou F-S, Bifulco C, et al. . International validation of the consensus immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet. (2018) 391:2128–39. 10.1016/S0140-6736(18)30789-X 10.1016/S0140-6736(18)30789-X 29754777 Gruosso T, Gigoux M, Manem VSK, Bertos N, Zuo D, Perlitch I, et al. . Spatially distinct tumor immune microenvironments stratify triple-negative breast cancers. J Clin Invest. (2019) 129:1785–1800. 10.1172/JCI96313 10.1172/JCI96313 PMC6436884 30753167 Saltz J, Gupta R, Hou L, Kurc T, Singh P, Nguyen V, et al. . Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images. Cell Rep. (2018) 23:181–93.e7. 10.1016/j.celrep.2018.03.086 10.1016/j.celrep.2018.03.086 PMC5943714 29617659 Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang T-H, et al. . The immune landscape of cancer. Immunity. (2019) 51:411–12. 10.1016/j.immuni.2019.08.004 10.1016/j.immuni.2019.08.004 31433971 Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG, Jenkins RW, et al. . Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell. (2018) 175:998–1013.e20. 10.1016/j.cell.2018.10.038 10.1016/j.cell.2018.10.038 PMC6641984 30388456 Zheng C, Zheng L, Yoo J-K, Guo H, Zhang Y, Guo X, et al. . Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell. (2017) 169:1342–56.e16. 10.1016/j.cell.2017.05.035 10.1016/j.cell.2017.05.035 28622514 Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. . Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. (2018) 24:1550–58. 10.1038/s41591-018-0136-1 10.1038/s41591-018-0136-1 PMC6487502 30127393 Pauken KE, Sammons MA, Odorizzi PM, Manne S, Godec J, Khan O, et al. . Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science. (2016) 354:1160–65. 10.1126/science.aaf2807 10.1126/science.aaf2807 PMC5484795 27789795 Sen DR, Kaminski J, Barnitz RA, Kurachi M, Gerdemann U, Yates KB, et al. The epigenetic landscape of T cell exhaustion. Science. (2016) 354:1165–9. 10.1126/science.aae0491 10.1126/science.aae0491 PMC5497589 27789799 Philip M, Fairchild L, Sun L, Horste EL, Camara S, Shakiba M, et al. . Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature. (2017) 545:452–6. 10.1038/nature22367 10.1038/nature22367 PMC5693219 28514453 Quaranta V, Rainer C, Nielsen SR, Raymant ML, Ahmed MS, Engle DD, et al. . Macrophage-derived granulin drives resistance to immune checkpoint inhibition in metastatic pancreatic cancer. Cancer Res. (2018) 78:4253–69. 10.1158/0008-5472.CAN-17-3876 10.1158/0008-5472.CAN-17-3876 PMC6076440 29789416 Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, et al. . Low-dose irradiation programs macrophage differentiation to an iNOS /M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell. (2013) 24:589–602. 10.1016/j.ccr.2013.09.014 10.1016/j.ccr.2013.09.014 24209604 Lindner S, Dahlke K, Sontheimer K, Hagn M, Kaltenmeier C, Barth TFE, et al. . Interleukin 21-induced granzyme B-expressing B cells infiltrate tumors and regulate T cells. Cancer Res. (2013) 73:2468–79. 10.1158/0008-5472.CAN-12-3450 10.1158/0008-5472.CAN-12-3450 23384943 Selitsky SR, Mose LE, Smith CC, Chai S, Hoadley KA, Dittmer DP, et al. . Prognostic value of B cells in cutaneous melanoma. Genome Med. (2019) 11:36. 10.1186/s13073-019-0647-5 10.1186/s13073-019-0647-5 PMC6540526 31138334 Tesone AJ, Rutkowski MR, Brencicova E, Svoronos N, Perales-Puchalt A, Stephen TL, et al. . Satb1 overexpression drives tumor-promoting activities in cancer-associated dendritic cells. Cell Rep. (2016) 14:1774–86. 10.1016/j.celrep.2016.01.056 10.1016/j.celrep.2016.01.056 PMC4767618 26876172 Fuertes MB, Kacha AK, Kline J, Woo S-R, Kranz DM, Murphy KM, et al. . Host type I IFN signals are required for antitumor CD8 T cell responses through CD8α dendritic cells. J Exp Med. (2011) 208:2005–16. 10.1084/jem.20101159 10.1084/jem.20101159 PMC3182064 21930765 Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al. . Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. (2019) 37:773–82. 10.1038/s41587-019-0114-2 10.1038/s41587-019-0114-2 PMC6610714 31061481 Zaitsev K, Bambouskova M, Swain A, Artyomov MN. Complete deconvolution of cellular mixtures based on linearity of transcriptional signatures. Nat Commun. (2019) 10:2209. 10.1038/s41467-019-09990-5 10.1038/s41467-019-09990-5 PMC6525259 31101809 Giesen C, Wang HAO, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B, et al. . Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods. (2014) 11:417–22. 10.1038/nmeth.2869 10.1038/nmeth.2869 24584193 Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C, Borowsky AD, et al. . Multiplexed ion beam imaging of human breast tumors. Nat Med. (2014) 20:436–42. 10.1038/nm.3488 10.1038/nm.3488 PMC4110905 24584119 Galluzzi L, Chan TA, Kroemer G, Wolchok JD, López-Soto A. The hallmarks of successful anticancer immunotherapy. Sci Transl Med. (2018) 10:eaat7807. 10.1126/scitranslmed.aat7807 10.1126/scitranslmed.aat7807 30232229 Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. . Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. (2018) 24:541–50. 10.1038/s41591-018-0014-x 10.1038/s41591-018-0014-x PMC5998822 29686425 Auslander N, Zhang G, Lee JS, Frederick DT, Miao B, Moll T, et al. . Publisher Correction: Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nat Med. (2018) 24:1942. 10.1038/s41591-018-0247-8 10.1038/s41591-018-0247-8 PMC9639231 30333558 Davoli T, Uno H, Wooten EC, Elledge SJ. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science. (2017) 355:eaaf8399. 10.1126/science.aaf8399 10.1126/science.aaf8399 PMC5592794 28104840 Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, et al. . Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. (2016) 387:1837–46. 10.1016/S0140-6736(16)00587-0 10.1016/S0140-6736(16)00587-0 26970723 Huang AC, Orlowski RJ, Xu X, Mick R, George SM, Yan PK, et al. . A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma. Nat Med. (2019) 25:454–61. 10.1038/s41591-019-0357-y 10.1038/s41591-019-0357-y PMC6699626 30804515 Messina JL, Fenstermacher DA, Eschrich S, Qu X, Berglund AE, Lloyd MC, et al. . 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy? Sci Rep. (2012) 2:765. 10.1038/srep00765 10.1038/srep00765 PMC3479449 23097687 Roh W, Chen P-L, Reuben A, Spencer CN, Prieto PA, Miller JP, et al. . Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci Transl Med. (2017) 9:eaah3560. 10.1126/scitranslmed.aah3560 10.1126/scitranslmed.aah3560 PMC5819607 28251903 Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell. (2015) 160:48–61. 10.1016/j.cell.2014.12.033 10.1016/j.cell.2014.12.033 PMC4856474 25594174 Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, et al. . IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. (2017) 127:2930–40. 10.1172/JCI91190 10.1172/JCI91190 PMC5531419 28650338 Ock C-Y, Hwang J-E, Keam B, Kim S-B, Shim J-J, Jang H-J, et al. . Genomic landscape associated with potential response to anti-CTLA-4 treatment in cancers. Nat Commun. (2017) 8:1050. 10.1038/s41467-017-01018-0 10.1038/s41467-017-01018-0 PMC5648801 29051489 Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al. . Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. (2017) 18:248–62. 10.1016/j.celrep.2016.12.019 10.1016/j.celrep.2016.12.019 28052254 Szeto GL, Finley SD. Integrative approaches to cancer immunotherapy. Trends Cancer Res. (2019) 5:400–10. 10.1016/j.trecan.2019.05.010 10.1016/j.trecan.2019.05.010 PMC7467854 31311655 Wellenstein MD, de Visser KE. Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity. (2018) 48:399–416. 10.1016/j.immuni.2018.03.004 10.1016/j.immuni.2018.03.004 29562192 Spranger S, Gajewski TF. Impact of oncogenic pathways on evasion of antitumour immune responses. Nat Rev Cancer. (2018) 18:139–47. 10.1038/nrc.2017.117 10.1038/nrc.2017.117 PMC6685071 29326431 Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. (2017) 168:707–23. 10.1016/j.cell.2017.01.017 10.1016/j.cell.2017.01.017 PMC5391692 28187290 Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, et al. . Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. (2016) 6:202–16. 10.1158/1538-7445.AM2016-4363 10.1158/1538-7445.AM2016-4363 PMC4744499 26645196 Akbay EA, Koyama S, Carretero J, Altabef A, Tchaicha JH, Christensen CL, et al. . Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. (2013) 3:1355–63. 10.1158/2159-8290.CD-13-0310 10.1158/2159-8290.CD-13-0310 PMC3864135 24078774 Escors D, Gato-Cañas M, Zuazo M, Arasanz H, García-Granda MJ, Vera R, et al. . The intracellular signalosome of PD-L1 in cancer cells. Signal Transduct Target Ther. (2018) 3:26. 10.1038/s41392-018-0022-9 10.1038/s41392-018-0022-9 PMC6160488 30275987 Quigley D, Silwal-Pandit L, Dannenfelser R, Langerød A, Vollan HKM, Vaske C, et al. . Lymphocyte invasion in IC10/basal-like breast tumors is associated with wild-type TP53. Mol Cancer Res. (2015) 13:493–501. 10.1158/1541-7786.MCR-14-0387 10.1158/1541-7786.MCR-14-0387 PMC4465579 25351767 Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature. (2015) 523:231–5. 10.1038/nature14404 10.1038/nature14404 25970248 Maman S, Witz IP. A history of exploring cancer in context. Nat Rev Cancer. (2018) 18:359–76. 10.1038/s41568-018-0006-7 10.1038/s41568-018-0006-7 29700396 Altan-Bonnet G, Mukherjee R. Cytokine-mediated communication: a quantitative appraisal of immune complexity. Nat Rev Immunol. (2019) 19:205–17. 10.1038/s41577-019-0131-x 10.1038/s41577-019-0131-x PMC8126146 30770905 Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, et al. . Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. (2016) 375:819–29. 10.1056/NEJMoa1604958 10.1056/NEJMoa1604958 PMC5007206 27433843 Bertrand F, Montfort A, Marcheteau E, Imbert C, Gilhodes J, Filleron T, et al. . TNFα blockade overcomes resistance to anti-PD-1 in experimental melanoma. Nat Commun. (2017) 8:2256. 10.1038/s41467-017-02358-7 10.1038/s41467-017-02358-7 PMC5741628 29273790 Jacquelot N, Yamazaki T, Roberti MP, Duong CPM, Andrews MC, Verlingue L, et al. . Sustained type I interferon signaling as a mechanism of resistance to PD-1 blockade. Cell Res. (2019) 29:846–61. 10.1038/s41422-019-0224-x 10.1038/s41422-019-0224-x PMC6796942 31481761 Türei D, Korcsmáros T, Saez-Rodriguez J. OmniPath: guidelines and gateway for literature-curated signaling pathway resources. Nat Methods. (2016) 13:966–67. 10.1038/nmeth.4077 10.1038/nmeth.4077 27898060 Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. . A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. (2015) 6:7866. 10.1038/ncomms8866 10.1038/ncomms8866 PMC4525178 26198319 Choi H, Sheng J, Gao D, Li F, Durrans A, Ryu S, et al. . Transcriptome analysis of individual stromal cell populations identifies stroma-tumor crosstalk in mouse lung cancer model. Cell Rep. (2015) 10:1187–201. 10.1016/j.celrep.2015.01.040 10.1016/j.celrep.2015.01.040 25704820 Browaeys R, Saelens W, Saeys Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat Methods. (2020) 17:159–62. 10.1038/s41592-019-0667-5 10.1038/s41592-019-0667-5 31819264 Wang S, Karikomi M, MacLean AL, Nie Q. Cell lineage and communication network inference via optimization for single-cell transcriptomics. Nucleic Acids Res. (2019) 47:e66. 10.1093/nar/gky882 10.1093/nar/gky882 PMC6582411 30923815 Ghoshdastider U, Naeini MM, Rohatgi N, Revkov E. Data-driven inference of crosstalk in the tumor microenvironment. BioRxiv. (2019). 10.1101/835512 10.1101/835512 Kondratova M, Czerwinska U, Sompairac N, Amigorena SD, Soumelis V, Barillot E, et al. . A multiscale signalling network map of innate immune response in cancer reveals cell heterogeneity signatures. Nat Commun. (2019) 10:4808. 10.1038/s41467-019-12270-x 10.1038/s41467-019-12270-x PMC6805895 31641119 Worzfeld T, Finkernagel F, Reinartz S, Konzer A, Adhikary T, Nist A, et al. . Proteotranscriptomics reveal signaling networks in the ovarian cancer microenvironment. Mol Cell Proteomics. (2018) 17:270–89. 10.1074/mcp.RA117.000400 10.1074/mcp.RA117.000400 PMC5795391 29141914 Modugno FD, Di Modugno F, Colosi C, Trono P, Antonacci G, Ruocco G, et al. . 3D models in the new era of immune oncology: focus on T cells, CAF and ECM. J Exp Clin Cancer Res. (2019) 38:117. 10.1186/s13046-019-1086-2 10.1186/s13046-019-1086-2 PMC6429763 30898166 Barabási AL, Oltvai ZN. Network biology: understanding the cell's functional organization. Nat Rev Genet. (2004) 5:101–13. 10.1038/nrg1272 10.1038/nrg1272 14735121 Lesterhuis WJ, Bosco A, Millward MJ, Small M, Nowak AK, Lake RA. Dynamic versus static biomarkers in cancer immune checkpoint blockade: unravelling complexity. Nat Rev Drug Discov. (2017) 16:264–72. 10.1038/nrd.2016.233 10.1038/nrd.2016.233 28057932 Letai A. Functional precision cancer medicine-moving beyond pure genomics. Nat Med. (2017) 23:1028–35. 10.1038/nm.4389 10.1038/nm.4389 28886003 Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. . The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. (2012) 483:603–7. 10.1038/nature11003 10.1038/nature11003 PMC3320027 22460905 Iorio F, Knijnenburg TA, Vis DJ, Bignell GR, Menden MP, Schubert M, et al. . A landscape of pharmacogenomic interactions in cancer. Cell. (2016) 166:740–54. 10.1016/j.cell.2016.06.017 10.1016/j.cell.2016.06.017 PMC4967469 27397505 Bar-Ephraim YE, Kretzschmar K, Clevers H. Organoids in immunological research. Nat Rev Immunol. (2020) 20:279–93. 10.1038/s41577-019-0248-y 10.1038/s41577-019-0248-y 31853049 Wong AHH, Li H, Jia Y, Mak PI, Martins RP, da S, Liu Y, et al. . Drug screening of cancer cell lines and human primary tumors using droplet microfluidics. Sci Rep. (2017) 7:9109. 10.1038/s41598-017-08831-z 10.1038/s41598-017-08831-z PMC5567315 28831060 Eduati F, Utharala R, Madhavan D, Neumann UP, Longerich T, Cramer T, et al. . A microfluidics platform for combinatorial drug screening on cancer biopsies. Nat Commun. (2018) 9:2434. 10.1038/s41467-018-04919-w 10.1038/s41467-018-04919-w PMC6015045 29934552 Montero J, Sarosiek KA, DeAngelo JD, Maertens O, Ryan J, Ercan D, et al. . Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy. Cell. (2015) 160:977–89. 10.1016/j.cell.2015.01.042 10.1016/j.cell.2015.01.042 PMC4391197 25723171 Rohrs JA, Wang P, Finley SD. Understanding the dynamics of T-cell activation in health and disease through the lens of computational modeling. JCO Clin Cancer Inform. (2019) 3:1–8. 10.1200/CCI.18.00057 10.1200/CCI.18.00057 PMC6593125 30689404 Tognetti M, Gabor A, Yang M, Cappelletti V, Windhager J, Charmpi K, et al. Deciphering the signaling network landscape of breast cancer improves drug sensitivity prediction. biorxiv. (2020). 10.1101/2020.01.21.907691 10.1101/2020.01.21.907691 33932331 Eduati F, Doldàn-Martelli V, Klinger B, Cokelaer T, Sieber A, Kogera F, et al. . Drug resistance mechanisms in colorectal cancer dissected with cell type-specific dynamic logic models. Cancer Res. (2017) 77:3364–75. 10.1158/0008-5472.CAN-17-0078 10.1158/0008-5472.CAN-17-0078 PMC6433282 28381545 Fey D, Halasz M, Dreidax D, Kennedy SP, Hastings JF, Rauch N, et al. . Signaling pathway models as biomarkers: patient-specific simulations of JNK activity predict the survival of neuroblastoma patients. Sci Signal. (2015) 8:ra130. 10.1126/scisignal.aab0990 10.1126/scisignal.aab0990 26696630 Béal J, Montagud A, Traynard P, Barillot E, Calzone L. Personalization of logical models with multi-omics data allows clinical stratification of patients. Front Physiol. (2018) 9:1965. 10.3389/fphys.2018.01965 10.3389/fphys.2018.01965 PMC6353844 30733688 Eduati F, Jaaks P, Wappler J, Cramer T, Merten CA, Garnett MJ, et al. . Patient-specific logic models of signaling pathways from screenings on cancer biopsies to prioritize personalized combination therapies. Mol Syst Biol. (2020) 16:e8664. 10.15252/msb.20188664 10.15252/msb.20188664 PMC7029724 32073727 Arulraj T, Barik D. Mathematical modeling identifies Lck as a potential mediator for PD-1 induced inhibition of early TCR signaling. PLoS ONE. (2018) 13:e0206232. 10.1371/journal.pone.0206232 10.1371/journal.pone.0206232 PMC6200280 30356330 Bolouri H, Young M, Beilke J, Johnson R, Fox B, Huang L, et al. . Integrative network modeling reveals mechanisms underlying T cell exhaustion. Sci Rep. (2020) 10:1915. 10.1038/s41598-020-58600-8 10.1038/s41598-020-58600-8 PMC7002445 32024856 Norton K-A, Gong C, Jamalian S, Popel AS. Multiscale agent-based and hybrid modeling of the tumor immune microenvironment. Processes. (2019) 7:37. 10.3390/pr7010037 10.3390/pr7010037 PMC6349239 30701168 Kather JN, Poleszczuk J, Suarez-Carmona M, Krisam J, Charoentong P, Valous NA, et al. . Modeling of immunotherapy and stroma-targeting therapies in human colorectal cancer. Cancer Res. (2017) 77:6442–52. 10.1158/0008-5472.CAN-17-2006 10.1158/0008-5472.CAN-17-2006 28923860 Kather JN, Charoentong P, Suarez-Carmona M, Herpel E, Klupp F, Ulrich A, et al. . High-throughput screening of combinatorial immunotherapies with patient-specific models of metastatic colorectal cancer. Cancer Res. (2018) 78:5155–63. 10.1158/0008-5472.CAN-18-1126 10.1158/0008-5472.CAN-18-1126 29967263 Thurley K, Wu LF, Altschuler SJ. Modeling cell-to-cell communication networks using response-time distributions. Cell Syst. (2018) 6:355–67.e5. 10.1016/j.cels.2018.01.016 10.1016/j.cels.2018.01.016 PMC5913757 29525203 Grandclaudon M, Perrot-Dockès M, Trichot C, Karpf L, Abouzid O, Chauvin C, et al. . A quantitative multivariate model of human dendritic cell-T helper cell communication. Cell. (2019) 179:432–47.e21. 10.1016/j.cell.2019.09.012 10.1016/j.cell.2019.09.012 31585082 Wang H, Milberg O, Bartelink IH, Vicini P, Wang B, Narwal R, et al. . In silico simulation of a clinical trial with anti-CTLA-4 and anti-PD-L1 immunotherapies in metastatic breast cancer using a systems pharmacology model. R Soc Open Sci. (2019) 6:190366. 10.1098/rsos.190366 10.1098/rsos.190366 PMC6549962 31218069 Sontag ED. A dynamic model of immune responses to antigen presentation predicts different regions of tumor or pathogen elimination. Cell Syst. (2017) 4:231–41.e11. 10.1016/j.cels.2016.12.003 10.1016/j.cels.2016.12.003 PMC5323365 28131824 Sorribes IC, Basu A, Brady R, Enriquez-Navas PM, Feng X, Kather JN, et al. Harnessing patient-specific response dynamics to optimize evolutionary therapies for metastatic clear cell renal cell carcinoma – Learning to adapt. biorxiv. (2019). 10.1101/563130 10.1101/563130 Perlstein D, Shlagman O, Kogan Y, Halevi-Tobias K, Yakobson A, Lazarev I, et al. . Personal response to immune checkpoint inhibitors of patients with advanced melanoma explained by a computational model of cellular immunity, tumor growth, and drug. PLoS ONE. (2019) 14:e0226869. 10.1371/journal.pone.0226869 10.1371/journal.pone.0226869 PMC6932803 31877168 Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS, et al. . Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell. (2017) 171:934–49.e16. 10.1016/j.cell.2017.09.028 10.1016/j.cell.2017.09.028 PMC5685550 29033130 Chen PL, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, et al. . Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. (2016) 6:827–37. 10.1158/2159-8290.CD-15-1545 10.1158/2159-8290.CD-15-1545 PMC5082984 27301722 Hwang S, Kwon AY, Jeong JY, Kim S, Kang H, Park J, et al. . Immune gene signatures for predicting durable clinical benefit of anti-PD-1 immunotherapy in patients with non-small cell lung cancer. Sci Rep. (2020) 10:643. 10.1038/s41598-019-57218-9 10.1038/s41598-019-57218-9 PMC6971301 31959763 Peskov K, Azarov I, Chu L, Voronova V, Kosinsky Y, Helmlinger G. Quantitative mechanistic modeling in support of pharmacological therapeutics development in immuno-oncology. Front Immunol. (2019) 10:924. 10.3389/fimmu.2019.00924 10.3389/fimmu.2019.00924 PMC6524731 31134058 Eisenstein M. Making cancer immunotherapy a surer bet. Nature. (2017) 552:S72–S73. 10.1038/d41586-017-08704-5 10.1038/d41586-017-08704-5 32094674 trying2... trying... trying2...
Toward Systems Biomarkers of Response to Immune Checkpoint Blockers. | LitMetric
Immunotherapy with checkpoint blockers (ICBs), aimed at unleashing the immune response toward tumor cells, has shown a great improvement in overall patient survival compared to standard therapy, but only in a subset of patients. While a number of recent studies have significantly improved our understanding of mechanisms playing an important role in the tumor microenvironment (TME), we still have an incomplete view of how the TME works as a whole. This hampers our ability to effectively predict the large heterogeneity of patients' response to ICBs. Systems approaches could overcome this limitation by adopting a holistic perspective to analyze the complexity of tumors. In this Mini Review, we focus on how an integrative view of the increasingly available multi-omics experimental data and computational approaches enables the definition of new systems-based predictive biomarkers. In particular, we will focus on three facets of the TME toward the definition of new systems biomarkers. First, we will review how different types of immune cells influence the efficacy of ICBs, not only in terms of their quantification, but also considering their localization and functional state. Second, we will focus on how different cells in the TME interact, analyzing how inter- and intra-cellular networks play an important role in shaping the immune response and are responsible for resistance to immunotherapy. Finally, we will describe the potential of looking at these networks as dynamic systems and how mathematical models can be used to study the rewiring of the complex interactions taking place in the TME.
Similar Publications
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!