Hollow spheres are charming objects in nature. In this work, an unexpected deflation-inflation asymmetric growth (DIAG) strategy is reported, generating hollow nanoparticles with tailored concave geometry for interface catalysis. Starting from aminophenol-formaldehyde (APF) nanospheres where the interior crosslinking degree is low, fully deflated nanobowls are obtained after etching by acetone. Due to APF etching and repolymerization reactions occuring asymmetrically within a single particle, an autonomous inflation process is observed similar to a deflated basketball that inflates back to a "normal" ball, which is rare at the nanoscale. A nucleophilic addition reaction between acetone and APF is elucidated to explain the chemistry origin of the DIAG process. Interestingly, the deflated APF hollow spheres enable preferential immobilization of lipase in the concave domain, which facilitates the stabilization of Pickering emulsion droplets for enhanced enzymatic catalysis at the oil-water interface. The study provides new understandings in the designable synthesis of hollow nanoparticles and paves the way toward a wide range of applications of asymmetric architectures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7341089PMC
http://dx.doi.org/10.1002/advs.202000393DOI Listing

Publication Analysis

Top Keywords

hollow spheres
12
interface catalysis
8
deflation-inflation asymmetric
8
asymmetric growth
8
hollow nanoparticles
8
acetone apf
8
hollow
5
shaping nanoparticles
4
nanoparticles interface
4
catalysis concave
4

Similar Publications

Enhancing osteogenic properties with gelatin/chitosan hydrogel encapsulating lithium-coated titanium oxide hollow sphere particles loaded with quercetin.

Biomed Mater

January 2025

Department of Emergency, Shandong University, Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China, Jinan, Shandong, 250100, CHINA.

Metallic oxides especially lithium and titanium oxides are well known for their osteogenic properties. When combined in the right proportions, metallic oxides can have an even greater impact. However, releasing ions from oxides can lead to oxidative stress, which is harmful to cell growth.

View Article and Find Full Text PDF

Robust interfaces in anodes play a crucial role in boosting sodium-ion battery (SIB) performance. However, the fragile interfaces constructed by a two-step synthesis or artificial stack are prone to be destroyed during the charging/discharging processes, which significantly reduces the lifetime of SIBs. Here, a facile construction strategy is developed to produce robust interfaces in hollow sphere-like CoSe/nitrogen-doped carbon (HS-CoSe/NC) using intrinsic Co, N, C in metal-organic framework as precursors, which enhance the electron/ion diffusion kinetics.

View Article and Find Full Text PDF

In the realm of zinc-air batteries, high bifunctional catalytic efficacy is intimately tied to the evaluation of catalysts. Consequently, the pursuit of proficient bifunctional catalysts that can efficiently catalyze both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) remains a paramount objective in this research area. In this study, the spiny cobalt tetroxide (CoO) encapsulated hollow carbon spheres (HCSs) are constructed by anchoring CoO onto HCS via hydrothermal or annealing treatment.

View Article and Find Full Text PDF

Surface curvature-driven adsorption-reduction mechanism over hollow N-doped carbon enhances recovery of precious metal ions from wastewater.

Environ Res

January 2025

College of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, P.R. China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, P.R. China. Electronic address:

The recovery of precious metal ions (PMI) from wastewater has great significances from both economic and environmental perspectives. However, current recovery methods face limitations, including low efficiency and selectivity, as well as challenges in practical applications. In this study, hollow N-doped carbon spheres (HNC) are proved to be promising for improving anionic AuCl and PdCl recovery via the curvature effect, outperforming non-curved carbon (commercial active carbon and carbon nanosheet) due to their unique curvature effect.

View Article and Find Full Text PDF

The dry reforming of methane (DRM) could convert CH and CO into syngas, offering potential for greenhouse gas mitigation. However, DRM catalyst sintering and carbon deposition remain major obstacles. In this study, a highly dispersed PtNi alloy@Zr-doped 3D hollow flower-like MgAlO (AMO) spheres was prepared through a hydrophobic driving strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!