To study the extraction technology of polysaccharides (AAP) from Chinese herbal medicine formula and its mechanism of delaying aging. First, L9(3)4 orthogonal test was used to optimize the optimal enzyme-assisted extraction parameters of polysaccharides. And the anti-aging effects was evaluated by detecting mitochondrial function, protein, DNA, adhesion molecules and cell cycle in aging rats. The optimal extraction process parameters were the cellulase concentration of 1.5%, the pH at 5, the enzyme temperature at 50°C and the extraction time of 180 min. The anti-aging results showed that AAP can effectively increase the activities of malate dehydrogenase, succinate dehydrogenase and superoxide dismutase. It also can decrease the activity of monoamine oxidase and methane dicarboxylic aldehyde levels in the brain tissue. Meanwhile, the polysaccharides enhanced telomerase activity while reduced p16 protein expression of the brain mitochondria. In addition, the polysaccharides continued to improve heart damage and significantly lessen mitochondrial DNA concentrations. For a certain period of time, it also enhanced the activity of superoxide dismutase, reduced glutathione, glutathione peroxidase and decreased protein carbonyl and methane dicarboxylic aldehyde content of kidney in D-galactose-induced aging rats. Furthermore, the polysaccharides restored the number of cells in the peripheral blood lines and BMNC through inhibiting the drop of the number of red blood cells, white blood cells, platelets in the peripheral blood and bone marrow mononuclear cell of the aging rats. At the same time, AAP accelerated G1 phase cell to enter S phase in cell cycle in aging rats. Our research suggests that the polysaccharides may be a potential anti-aging agent and can be further developed as a functional food or new drug to delay aging or treat aging-related diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329167 | PMC |
http://dx.doi.org/10.1093/toxres/tfaa020 | DOI Listing |
PLoS One
January 2025
Department of Nutritional Physiology, National Institute of Medical and Nutritional Sciences "Salvador Zubirán", Mexico City, Mexico.
Childhood obesity increases the risk of developing metabolic diseases in adulthood, since environmental stimuli during critical windows of development can impact on adult metabolic health. Studies demonstrating the effect of prepubertal diet on adult metabolic disease risk are still limited. We hypothesized that a prepubertal control diet (CD) protects the adult metabolic phenotype from diet-induced obesity (DIO), while a high-fat diet (HFD) would predispose to adult metabolic alterations.
View Article and Find Full Text PDFBiogerontology
January 2025
UCIBIO-Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal.
Sarcopenia and cancer cachexia are two life-threatening conditions often misdiagnosed. The skeletal muscle is one of the organs most adversely affected by these conditions, culminating in poor quality of life and premature mortality. In addition, it has been suggested that chemotherapeutic agents exacerbate cancer cachexia, as is the case of doxorubicin.
View Article and Find Full Text PDFThe dysfunction of mitochondria, the primary source of cellular energy and producer of reactive oxygen species (ROS), is associated with brain aging and neurodegenerative diseases. Scientific evidence indicates that light in the visible and near-infrared spectrum can modulate mitochondrial activity, a phenomenon known in medicine as photobiomodulation therapy (PBM-t). The beneficial effects of PBM-t on dementia and neurodegeneration have been reviewed in the literature.
View Article and Find Full Text PDFDiscov Med
January 2025
Dermatology Department, Beijing Chaoyang Hospital Affiliated to Capital Medical University, 100020 Beijing, China.
Backgrounds: Ultraviolet (UV) radiation-induced photoaging is a multifaceted biological process. Fruit acids have shown promise in combating photoaging. This study aims to investigate the mechanisms underlying the protective effects of fruit acids on UV-induced skin photoaging.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Department of Pharmacology, Faculty of Medicine, Maranatha Christian University, Bandung 40164, West Java, Indonesia.
Objectives: Both intrinsic and extrinsic factors cause skin aging. Intrinsic aging is characterized by decreased collagen density, particularly collagen types I (COL1A1) and III (COL3A1), and an increase in the COL1/COL3 ratio. Extrinsic aging, primarily due to ultraviolet light exposure, leads to photoaging, which causes collagen fragmentation and reduced production, leading to skin sagging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!