Background: Beckwith-Wiedemann syndrome (BWS) is an overgrowth syndrome with variable clinical phenotype and complex molecular aetiology. It is mainly caused by dysregulation of the chromosome 11p15 imprinted region, which results in overgrowth in multiple tissues, often in a mosaic manner.
Case Presentation: A large-for-gestational-age infant without any other somatic features of BWS presented with medically refractory hyperinsulinism (HI) requiring 80% pancreatectomy. Next generation sequencing with congenital HI sequencing panel identified a pathogenic :c.1792C > T (p.Arg598Ter) variant of paternal origin, suggestive of focal HI. However, pancreatic histology revealed atypical findings of coalescing nests and trabeculae of adenomatosis scattered with islets with isolated enlarged, hyperchromatic nuclei scattered throughout the pancreas. Methylation analysis, SNP-based chromosomal microarray and short tandem repeat markers analysis revealed mosaic segmental paternal uniparental disomy (UPD) 11p15.5-p15.1 in the pancreatic tissue, but not the peripheral blood, suggestive of BWS/BW-spectrum HI.
Conclusions: This case highlights the importance of integrating the clinical presentation and subsequent clinical course, together with radiological, genetic and histological findings in the definitive diagnosis of this rare yet clinically important entity. In addition, this is the first report that demonstrated the level of paternal inherited c.1792 T pathogenic variant in the pancreatic tissue being directly correlated to the mosaic level of pUPD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7350603 | PMC |
http://dx.doi.org/10.1186/s13633-020-00083-5 | DOI Listing |
Front Endocrinol (Lausanne)
December 2024
Rare Disease Research Group, Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, Vitoria-Gasteiz, Spain.
Objective: To identify the genetic cause underlying the methylation defect in a patient with clinical suspicion of PHP1B/iPPSD3.
Design: Imprinting is an epigenetic mechanism that allows the regulation of gene expression. The locus is one of the loci within the genome that is imprinted.
Sci Rep
December 2024
Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada.
Mitochondrial epigenetics, particularly mtDNA methylation, is a flourishing field of research. MtDNA methylation appears to play multiple roles, including regulating mitochondrial transcription, cell metabolism and mitochondrial inheritance. In animals, bivalves with doubly uniparental inheritance (DUI) of mitochondria are the exception to the rule of maternal mitochondrial inheritance since DUI also involve a paternal mtDNA transmitted from the father to sons.
View Article and Find Full Text PDFForensic Sci Int Genet
December 2024
DNA Diagnostic Laboratory, Institute of Biology Roberto Alcantara Gomes, State University of Rio de, Rio de Janeiro 20550-900, Brazil.
Latin American countries are distinguished by their highly admixed populations, characterized by a significant preservation of Native American matrilineal ancestry. This contrasts with the paternal lineages, which exhibit different patterns due to pronounced sex-biased mating practices during the colonial period. Uniparental genetic markers have been instrumental in population genetics, facilitating the reconstruction of human settlement histories and serving forensic identification purposes.
View Article and Find Full Text PDFMol Genet Genomic Med
December 2024
Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Background: Uniparental isodisomy (UPiD) refers to a condition, in which both homologous chromosomes are inherited from only one parental homolog, which can result in either imprinting disorders or autosomal recessive conditions.
Methods: We performed chromosomal microarray analysis, exome sequencing (ES), and RNA sequencing (RNA-seq) using the patient's urine-derived cells on a patient with growth retardation and multiple congenital anomalies.
Results: We identified a homozygous ~0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!