Identification of Bacterial Blight Resistant Rice Seeds Using Terahertz Imaging and Hyperspectral Imaging Combined With Convolutional Neural Network.

Front Plant Sci

College of Biosystems Engineering and Food Science, Key Laboratory of Spectroscopy, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.

Published: June 2020

Because bacterial blight (BB) disease seriously affects the yield and quality of rice, breeding BB resistant rice is an important priority for plant breeders but the process is time-consuming. The feasibility of using terahertz imaging technology and near-infrared hyperspectral imaging technology to identify BB resistant seeds has therefore been studied. The two-dimensional (2D) spectral images and one-dimensional (1D) spectra provided by both imaging methods were used to build discriminant models based on a deep learning method, the convolutional neural network (CNN), and traditional machine learning methods, support vector machine (SVM), random forest (RF), and partial least squares discriminant analysis (PLS-DA). The highest classification accuracy was achieved by the discriminate model based on CNN using the terahertz absorption spectra. Confusion matrixes were pictured to show the identification details. The t-distributed stochastic neighbor embedding (t-SNE) method was used to visualize the process of CNN data processing. Terahertz imaging technology combined with CNN has great potential to quickly identify BB resistant rice seeds and is more accurate than using near-infrared hyperspectral imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7326944PMC
http://dx.doi.org/10.3389/fpls.2020.00821DOI Listing

Publication Analysis

Top Keywords

resistant rice
12
terahertz imaging
12
hyperspectral imaging
12
imaging technology
12
bacterial blight
8
rice seeds
8
convolutional neural
8
neural network
8
near-infrared hyperspectral
8
identify resistant
8

Similar Publications

A small RNA effector conserved in herbivore insects suppresses host plant defense by cross-kingdom gene silencing.

Mol Plant

January 2025

State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:

Herbivore insects deploy salivary effectors to manipulate the defense of their host plants. However, it remains unclear whether small RNAs from insects function as effectors in regulating plant-insect interactions. Here, we report that a microRNA (miR29-b) found in the saliva of phloem-feeding whitefly (Bemisa tabaci) can transfer into the host plant phloem during feeding and fine-tune the defense response of tobacco (Nicotiana tabacum).

View Article and Find Full Text PDF

Contrasting effects of arsenic on mycorrhizal-mediated silicon and phosphorus uptake by rice.

J Environ Manage

January 2025

Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.

Silicon (Si) and arbuscular mycorrhizal fungi (AMF) increase plant resistance to various environmental stresses, including heavy metal (and metalloid) toxicity. Although Si and AMF each independently enhance plant tolerance, the nature of their interactions and their combined impacts on nutrient uptake, especially in the context of toxic elements such as arsenic (As), remains to be elucidated. This study investigated AMF-mediated regulation of plant nutrient uptake under As stress using rice, a model Si-accumulating plant.

View Article and Find Full Text PDF

Ubiquitination of OsCSN5 by OsPUB45 activates immunity by modulating the OsCUL3a-OsNPR1 module.

Sci Adv

January 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

The COP9 signalosome (CSN) is a highly conserved protein complex in eukaryotes, with CSN5 serving as its critical catalytic subunit. However, the role of CSN5 in plant immunity is largely unexplored. Here, we found that suppression of in rice enhances resistance against the fungal pathogen and the bacterial pathogen pv.

View Article and Find Full Text PDF

Rice (Oryza sativa ) is a crucial staple crop worldwide, providing nutrition to more than half of the global population. Nonetheless, the sustainability of grain production is increasingly jeopardized by both biotic and abiotic stressors exacerbated by climate change, which increases the crop's rvulnerability to pests and diseases. Genome-editing by clustered regularly interspaced short palindromic repeats and CRISPR-associated Protein 9 (CRISPR-Cas9) presents a potential solution for enhancing rice productivity and resilience under climatic stress.

View Article and Find Full Text PDF

Unraveling key ABA pathways, including OsWRKY71-OsABA8ox1 and OsbZIP73-OsNCED5, provides valuable insights for improving cold tolerance in rice breeding for cold-prone regions. Cold stress limits rice (Oryza sativa L.) production in cooler climates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!