is an interesting concept. For some cultural groups, time is an entity that exists only in the here and now, whereas for others it can be linear, emphasizing a person's past, present, and future. Many of us, while living in the "present moment," may also anticipate and project future goals, dreams, hopes, and ambitions. Indeed, from a positive point of view, future orientations are healthy and may direct one's focus, instill motivation and persistence, and mobilize the expenditure of effort. Existing research has provided empirical evidence to support the promotion and encouragement of a positive . From an educational point of view, the study of time may be useful for calculating achievement, given that a student may use future time orientation to guide and direct his/her academic and/or non-academic future. One notable question for consideration, in this case, relates to the - that is, how far into the future should one project? There may be a significant difference between, say, a timespan that scopes a 6-month period as opposed to a timespan that scopes a 2-year period. By the same token, over the past few years we have delved into an interesting line of inquiry, namely, the - for example, what facilitates and/or causes a person to achieve an optimal level of best practice in particular subject matter? Our theory of human optimization, consolidated and recently published in , provides an in-depth theoretical account of an underlying process, which we postulate could help explain the achievement of optimal best. Optimization, in this case, is intimately linked to a person's achievement of optimal best. We rationalize that within the context of academic learning, cognitive complexity of particular subject matter could serve as an important source of motivation in the anticipation and projection a student's extended future timespan. In this analysis, the extremely complex nature of a learning task or a suite of tasks may compel a student to consider a longer future timespan for successful completion. We also argue, in contrast, that the specific duration of a future timespan (for e.g., 6 months vs. 2 years) could play a significant role in the successful optimization of a student's state of cognitive functioning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7326102PMC
http://dx.doi.org/10.3389/fpsyg.2020.01037DOI Listing

Publication Analysis

Top Keywords

achievement optimal
12
optimal best
12
future timespan
12
future
11
future time
8
point view
8
timespan scopes
8
timespan
5
time perspective
4
achievement
4

Similar Publications

"Popping the Ion-Basket": Enhancing Thermoelectric Performance of Conjugated Polymers by Blending with Latently Dissociable Perovskite Quantum Dots.

Adv Sci (Weinh)

January 2025

SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.

A novel additive method to boost the Seebeck coefficient of doped conjugated polymers without a significant loss in electrical conductivity is demonstrated. Perovskite (CsPbBr) quantum dots (QDs) passivated by ligands with long alkyl chains are mixed with a conjugated polymer in a solution phase to form polymer-QD blend films. Solution sequential doping of the blend film with AuCl solution not only doped the conjugated polymer but also decomposed the QDs, resulting in a doped conjugated polymer film embedded with separated ions dissociated from the QDs.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) frequently metastasizes to the brain, significantly worsened prognoses. This study aimed to develop an interpretable model for predicting survival in NSCLC patients with brain metastases (BM) integrating radiomic features and RNA sequencing data. 292 samples are collected and analyzed utilizing T1/T2 MRIs.

View Article and Find Full Text PDF

Controlled-release nitrogen combined with ordinary nitrogen fertilizer improved nitrogen uptake and productivity of winter wheat.

Front Plant Sci

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China.

Background: Blending controlled-release nitrogen fertilizer (CRNF) with ordinary nitrogen fertilizer (ONF) is a strategic approach to improve winter wheat nutrient management. This blend provides nitrogen (N) to winter wheat in a balanced and consistent manner, ensuring long-term growth, reducing nutrient loss due to leaching or volatilization, and increasing N use efficiency (NUE).

Aims: CRNF aims to enhance N application suitability, optimizes soil nutrient dynamics, and its widespread use can boost crop NUE and yield.

View Article and Find Full Text PDF

Discovering non-associated pressure-sensitive plasticity models with EUCLID.

Adv Model Simul Eng Sci

January 2025

Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zürich, Zürich, 8092 Switzerland.

We extend (EUCLID Efficient Unsupervised Constitutive Law Identification and Discovery)-a data-driven framework for automated material model discovery-to pressure-sensitive plasticity models, encompassing arbitrarily shaped yield surfaces with convexity constraints and non-associated flow rules. The method only requires full-field displacement and boundary force data from one single experiment and delivers constitutive laws as interpretable mathematical expressions. We construct a material model library for pressure-sensitive plasticity models with non-associated flow rules in four steps: (1) a Fourier series describes an arbitrary yield surface shape in the deviatoric stress plane; (2) a pressure-sensitive term in the yield function defines the shape of the shear failure surface and determines plastic deformation under tension; (3) a compression cap term determines plastic deformation under compression; (4) a non-associated flow rule may be adopted to avoid the excessive dilatancy induced by plastic deformations.

View Article and Find Full Text PDF

Background: The combined technique of programmed intermittent epidural boluses (PIEB) and dural puncture epidural (DPE) is currently considered a more effective mode for labor analgesia. We investigated the optimal interval time for PIEB administration with different concentrations of ropivacaine combined with the DPE for labor analgesia.

Methods: Ninety patients with cervical dilation of <5 cm and a VAS score >5 were randomly assigned to receive labor analgesia with ropivacaine at concentrations of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!