Non-invasive measurements of brain function and structure as neuroimaging in patients with mental illnesses are useful and powerful tools for studying discriminatory biomarkers. To date, functional MRI (fMRI), structural MRI (sMRI) represent the most used techniques to provide multiple perspectives on brain function, structure, and their connectivity. Recently, there has been rising attention in using machine-learning (ML) techniques, pattern recognition methods, applied to neuroimaging data to characterize disease-related alterations in brain structure and function and to identify phenotypes, for example, for translation into clinical and early diagnosis. Our aim was to provide a systematic review according to the PRISMA statement of Support Vector Machine (SVM) techniques in making diagnostic discrimination between SCZ patients from healthy controls using neuroimaging data from functional MRI as input. We included studies using SVM as ML techniques with patients diagnosed with Schizophrenia. From an initial sample of 660 papers, at the end of the screening process, 22 articles were selected, and included in our review. This technique can be a valid, inexpensive, and non-invasive support to recognize and detect patients at an early stage, compared to any currently available assessment or clinical diagnostic methods in order to save crucial time. The higher accuracy of SVM models and the new integrated methods of ML techniques could play a decisive role to detect patients with SCZ or other major psychiatric disorders in the early stages of the disease or to potentially determine their neuroimaging risk factors in the near future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7326270PMC
http://dx.doi.org/10.3389/fpsyt.2020.00588DOI Listing

Publication Analysis

Top Keywords

support vector
8
vector machine
8
systematic review
8
brain function
8
function structure
8
functional mri
8
neuroimaging data
8
svm techniques
8
detect patients
8
patients
5

Similar Publications

Background: Intrahepatic cholestasis of pregnancy (ICP) is a liver disorder that occurs in the second and third trimesters of pregnancy and is associated with a significant risk of fetal complications, including premature birth and fetal death. In clinical practice, the diagnosis of ICP is predominantly based on the presence of pruritus in pregnant women and elevated serum total bile acid. However, this approach may result in missed or delayed diagnoses.

View Article and Find Full Text PDF

To develop and validate non-contrast computed tomography (NCCT)-based radiomics method combines machine learning (ML) to investigate invisible microscopic acute ischaemic stroke (AIS) lesions. We retrospectively analyzed 1122 patients from August 2015 to July 2022, whose were later confirmed AIS by diffusion-weighted imaging (DWI). However, receiving a negative result was reported by radiologists according to the NCCT images.

View Article and Find Full Text PDF

In the last decades, natural and anthropogenic pressures have caused observable changes in the argan landscape despite its significance in Morocco. Remote sensing data can be used to monitor these changes over time and provide information on vegetation health and land cover changes. This study assesses the performance of supervised methods (support vector machine, maximum likelihood, and minimum distance) and unsupervised classification method (Isodata) for mapping the argan forest in the Smimou area of Essaouira province using remote sensing data from Landsat-5 and Landsat-8 (1985 and 2019).

View Article and Find Full Text PDF

PREDICTIVE MODELS OF CLINICAL OUTCOME OF ENDOVASCULAR TREATMENT FOR ANTERIOR CIRCULATION STROKE USING MACHINE LEARNING.

J Neurosci Methods

January 2025

University of Brest, LATIM, INSERM UMR1101, Brest, France; Department of Radiology, Mayo Clinic Rochester, MN, USA. Electronic address:

Background And Purpose: Mechanical Thrombectomy (MT) has recently become the standard of care for anterior circulation stroke with large vessel occlusion, but predictive factors of successful MT are still not clearly defined. To tailor treatment individually for each patient, the aim of this study was to evaluate the performances of Machine Learning to predict clinical outcome (mRS) at 3 months after MT.

Material And Methods: From the ETIS French prospective multicenter registry, data from patients who underwent MT for anterior circulation stroke with large vessel occlusion between January 2018 and December 2020 were extracted.

View Article and Find Full Text PDF

Objective: The aim of the present study is to examine the relationship between EEG measures and functional recovery in right-hemisphere stroke patients.

Methods: Participants with stroke (PS) and neurologically unimpaired controls (UC) were enrolled. At enrolment, all participants were assessed for motor and cognitive functioning with specific scales (motricity index, trunk control test, Level of Cognitive Functioning, and Functional Independence Measure (FIM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!