Purpose: This study aimed to investigate the molecular characteristics, antimicrobial resistance and virulence genes profiles of isolates from Wuhan, central China.
Materials And Methods: A total of 302 non-duplicate isolates were collected successively during January-December 2018 and subjected to multi-locus sequence typing (MLST), () typing and (PVL) and A, B, C, D, E, G, H and I ( and ) detection. All methicillin-resistant (MRSA) isolates were additionally subjected to staphylococcal chromosomal cassette (SCC) typing.
Results: Of the 302 isolates, 131 were categorised as MRSA, yielding a rate 1.4 times the average rate in China during 2018 (43.4% vs 30.9%). Thirty-one sequence types (STs) and 82 types were identified. The most prevalent clones were ST5-t2460 (10.9%), ST239-t030 (9.3%), ST188-t189 (7.9%) and ST59-t437 (6.3%). Notably, the continued prevalence of ST239-t030 in Wuhan differs from other areas in China. SCC types and subtypes I, II, III, IVa and V were present in 0.8%, 36.6%, 26.0%, 20.6% and 8.4% of MRSA isolates. A comprehensive analysis identified ST5-t2460-SCC II (25.2%,), ST239-t030-SCC III (19.8%) and ST59-t437-SCC IVa (7.6%) as the major clones among MRSA isolates. The genes and were detected at respective frequencies of 11.9%, 42.1%, 49.7%, 45.0%, 20.9%, 33.8%, 60.5%, 25.8% and 66.9%.
Conclusion: ST239-t030 remains one of the most prevalent clones in isolates from Wuhan, leading us to conclude that isolates from Wuhan possess unique molecular characteristics. The isolates also exhibit unique antimicrobial resistance profiles and harbour relatively high numbers of enterotoxin virulence genes, compared with other reports from China.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335743 | PMC |
http://dx.doi.org/10.2147/IDR.S249988 | DOI Listing |
Sci Rep
January 2025
Institute for Disaster Management and Reconstruction, Sichuan University, No. 122, Section 1, Huanghe Middle Road, Chengdu, 610211, China.
In the early days of the urban pandemic, many cities had personal protective equipment (PPE) shortages, which adversely affected urban pandemic governance. Using the COVID-19 strategies employed in Wuhan as the pivotal case study, this study sought to determine effective strategies to optimize city PPE distribution. System dynamics modeling was employed to explore the influence of PPE allocation strategies on pandemic control measures.
View Article and Find Full Text PDFJ Infect
January 2025
National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, PR China. Electronic address:
Objectives: Emerging human pathogens of animal origin have become an increasing public health concern in recent years. The aim of this study was to investigate the transmission of group B streptococcus (GBS) clonal complex (CC) 61 strains in the southern Chinese population and analyze their genetic characteristics.
Methods: Whole-genome sequencing was performed on 693 clinical isolates of GBS collected from southern China between 2016 and 2021, and the prevalence of human CC61 isolates was investigated by genomic epidemiology.
Microbiol Spectr
January 2025
National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
Unlabelled: Bovine herpesvirus (BoHV) infection poses a significant threat to the healthy development of the cattle industry. BoHV-1 primarily causes infectious bovine rhinotracheitis, while BoHV-5 is associated with bovine necrotic meningoencephalitis. These two pathogens not only exhibit a high correlation in antigenicity and genetic background but, more importantly, can establish latent infections within the bovine ganglion.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
Electrochemical oxidation of small molecules shows great promise to substitute oxygen evolution reaction (OER) or hydrogen oxidation reaction (HOR) to enhance reaction kinetics and reduce energy consumption, as well as produce high-valued chemicals or serve as fuels. For these oxidation reactions, high-valence metal sites generated at oxidative potentials are typically considered as active sites to trigger the oxidation process of small molecules. Isolated atom site catalysts (IASCs) have been developed as an ideal system to precisely regulate the oxidation state and coordination environment of single-metal centers, and thus optimize their catalytic property.
View Article and Find Full Text PDFIntroduction: China implemented a dynamic zero-COVID strategy to curb viral transmission in response to the coronavirus disease 2019 (COVID-19) pandemic. This strategy was designed to inhibit mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19. This study explores the dynamics of viral evolution under stringent non-pharmaceutical interventions (NPIs) through real-world observations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!