AI Article Synopsis

  • Researchers isolated a fungus called Talaromyces pinophilus to discover new inhibitors for an enzyme (PfDHODH) linked to the malaria-causing parasite Plasmodium falciparum.* -
  • The main compound identified, altenusin, inhibited PfDHODH with a potency of 5.9 μM, and other metabolites, mitorubrinol and mitorubrinic acid, also showed inhibitory effects.* -
  • While compounds 1 and 2 effectively targeted PfDHODH and hindered parasite growth, they did not affect the human version of the enzyme, whereas compound 3 had minimal inhibitory properties.*

Article Abstract

An Indonesian soil fungus, Talaromyces pinophilus BioMCC-f.T.3979 was cultured to find novel scaffolds of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. We obtained altenusin (1), which inhibits PfDHODH, with an IC value of 5.9 μM, along with other metabolites: mitorubrinol (2) and mitorubrinic acid (3). Compounds 1 and 2 inhibited PfDHODH but displayed no activity against the human orthologue. They also inhibited P. falciparum 3D7 cell growth in vitro. Compound 3 showed little PfDHODH inhibitory activity or cell growth inhibitory activity.

Download full-text PDF

Source
http://dx.doi.org/10.2323/jgam.2019.11.007DOI Listing

Publication Analysis

Top Keywords

plasmodium falciparum
8
falciparum dihydroorotate
8
dihydroorotate dehydrogenase
8
indonesian soil
8
soil fungus
8
fungus talaromyces
8
talaromyces pinophilus
8
pinophilus biomcc-ft3979
8
cell growth
8
inhibitory activity
8

Similar Publications

The human malaria parasite Plasmodium falciparum evolved from a parasite that infects gorillas, termed Plasmodium praefalciparum. The sialic acids on glycans on the surface of erythrocytes differ between humans and other apes. It has recently been shown that the P.

View Article and Find Full Text PDF

Guillain-Barré syndrome following falciparum malaria infection: a case report.

BMC Neurol

January 2025

Department of Radiology, School of Medicine, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Teferi, Ethiopia.

Background: Malaria is an infectious disease caused by Plasmodium parasites, transmitted to humans by infected female Anopheles mosquitoes. Five Plasmodium species infect humans: P. vivax, P.

View Article and Find Full Text PDF

Genetically attenuated parasites show promise as a next-generation malaria vaccine.

Trends Parasitol

January 2025

Department of Molecular Parasitology, Institute of Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany. Electronic address:

Metabolically active, genetically attenuated Plasmodium falciparum parasite lines are promising second-generation malaria vaccine candidates. Lamers et al. and Roozen et al.

View Article and Find Full Text PDF

Clarification of factors associated with post-artesunate delayed hemolysis (PADH): analysis of 327 patients with severe imported Plasmodium falciparum malaria in France.

Travel Med Infect Dis

January 2025

Centre National de Référence du Paludisme, Paris, France; Centre de Recherche en Epidémiologie et Santé des Populations (CESP), INSERM U1018, Paris, France; Université Paris-Saclay, Service des Maladies infectieuses et tropicales, APHP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Société Française de Médecine des Voyages.

Background: Post-Artesunate delayed hemolysis (PADH) occurs in approximately 15% of treated patients 2 to 3 weeks after artesunate administration. Identifying risk markers for PADH would help predict which patients are at higher risk.

Methods: In this prospective national cohort study conducted in a non-malaria endemic area from 2011 to 2016, a Cox proportional hazards model was used to assess the association between clinical and biological data available at Day 0 and the occurrence of PADH within 30 days of artesunate administration.

View Article and Find Full Text PDF

Malaria remains a global health concern, with 249 million cases and 608,000 deaths being reported by the WHO in 2022. Traditional diagnostic methods often struggle with inconsistent stain quality, lighting variations, and limited resources in endemic regions, making manual detection time-intensive and error-prone. This study introduces an automated system for analyzing Romanowsky-stained thick blood smears, focusing on image quality evaluation, leukocyte detection, and malaria parasite classification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!