A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Production and characterization of alginate bilayer membranes for releasing simvastatin to treat wounds. | LitMetric

This study aims to produce and characterize alginate bilayer membranes composed of single membranes with varying cross-linking degrees to modulate simvastatin release, with potential to be used for wound-dressing. The single-layer and bilayer membranes were characterized by weight, thickness, surface pH, equilibrium-humidity, swelling degree, solubility, infrared spectroscopy (attenuated total reflectance Fourier-transform infrared), scanning electron microscopy, and water vapor transmission. Simvastatin diffusion and release rates were analyzed using Franz's cells; its indirect cytotoxicity was analyzed using human keratinocyte cells. The difference in the cross-linking degree (bottom and top layers) influenced the morphology of the membrane, and consequently its physical barrier properties. An in vitro release study demonstrated that the bilayer membrane could sustain drug-release for longer time as compared to the single-layer membrane, which could be potentially beneficial for long-term treatment of chronic wounds. A cell viability assay showed that simvastatin-loaded alginate membranes could be characterized as noncytotoxic, demonstrating their potential for use in wound-dressing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1116/6.0000167DOI Listing

Publication Analysis

Top Keywords

bilayer membranes
12
alginate bilayer
8
potential wound-dressing
8
membranes characterized
8
membranes
5
production characterization
4
characterization alginate
4
bilayer
4
membranes releasing
4
releasing simvastatin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!