In recent years, peracetic acid (PAA) has gained a lot of attention as an alternative disinfectant to chlorine-based disinfectants in the water industry. Commercial PAA solutions contain both PAA and hydrogen peroxide (HP), and the degradation of HP is slower than PAA when it is used for disinfection. All previous toxicity studies have been based on commercial PAA, and variance in toxicity values have been observed due to different PAA:HP ratios. In this study, the ecotoxicity of pure PAA was studied, eliminating HP from the commercial PAA mixture using potassium permanganate. Ecotoxicity data were obtained by conducting a battery of ecotoxicity tests: bioassays using , and . The effect concentration (EC) of pure PAA was 0.84 (a 95% confidence interval of 0.78-0.91) mg/L for and 2.46 (2.35-2.58) mg/L for , whereas the lethal concentration (LC) was 0.74 (0.55-0.91) mg/L for . Compared to this, our previous study found that the EC values of commercial PAA towards and were 0.42 (0.41-0.44) and 1.38 (0.96-1.99) mg/L, respectively, which were lower than pure PAA, whilst the LC for was 0.78 (0.58-0.95) mg/L. These results showed that pure PAA was less toxic to the most commonly used aquatic species for toxicity tests compared to commercial PAA, except for .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400010PMC
http://dx.doi.org/10.3390/ijerph17145031DOI Listing

Publication Analysis

Top Keywords

commercial paa
24
pure paa
16
paa
14
peracetic acid
8
acid paa
8
hydrogen peroxide
8
commercial
6
pure
5
mg/l
5
ecotoxicity
4

Similar Publications

Emergency bleeding presents significant challenges such as high blood flow and rapid hemorrhaging. However, many existing hemostatic bandages face limitations, including the uncontrolled release of hemostatic agents, insufficient mechanical strength, poor adhesion, and complex manufacturing processes. To address these limitations, we developed a multifunctional hydrogel bandage for emergency hemostasis using a one-pot synthesis method.

View Article and Find Full Text PDF

Facile preparation of a hydrophilic Eu-based ratiometric fluorescent nanosensor for Cu ion detection and imaging in living cells.

Anal Methods

January 2025

Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China.

In this work, a hydrophilic Eu-based ratiometric fluorescent nanosensor (PAAC-Eu) was developed for Cu ion detection in aqueous solutions and imaging in living cells. The sensor was prepared a simple one-step reaction at room temperature, leveraging the synergistic coordination of commercially accessible polyacrylic acid (PAA) and coumarin-3-carboxylic acid (CCAH) with Eu ions. PAAC-Eu was easy to disperse in aqueous media and exhibited two characteristic emission bands at 406 nm and 618 nm, respectively, upon excitation at 350 nm.

View Article and Find Full Text PDF

Objective: This study investigates the association between phenotypic age acceleration (PAA) and all-cause and cause-specific mortality in obese individuals.

Methods: Data were drawn from the National Health and Nutrition Examination Survey (NHANES) between 1999 and 2018, including 9,925 obese adults (BMI ≥ 30 kg/m). PAA, defined as phenotypic age exceeding chronological age, was assessed using clinical biomarkers.

View Article and Find Full Text PDF

Artificial Graphite-Based Silicon Composite Anodes for Lithium-Ion Batteries.

Nanomaterials (Basel)

December 2024

Department of Chemical, Biological and Battery Engineering, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.

To develop an advanced anode for lithium-ion batteries, the electrochemical performance of a novel material comprising a porous artificial carbon (PAC)-Si composite was investigated. To increase the pore size and surface area of the composite, ammonium bicarbonate (ABC) was introduced during high-energy ball-milling, ensuring a uniform distribution of silicon within the PAC matrix. The physical and structural properties of the developed material were evaluated using several advanced techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM), and galvanostatic intermittent titration (GITT).

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on creating a new nanocomposite (GO-PAA-Cu-LP) for medical uses through a multi-step synthesis involving graphene oxide and polyacrylic acid.
  • The research includes a variety of characterization techniques to analyze the nanocomposite, demonstrating that it retains about 73% of its reactivity even after 9 weeks of storage at low temperatures.
  • The findings show that the modified GO-PAA-Cu-LP has enhanced selectivity against cancer cells, promoting apoptosis and cell cycle arrest compared to standard composites and lactoperoxidase alone.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!