Glioblastoma multiforme (GBM) shows a high influx of tumor-associated macrophages (TAMs). The CCR2/CCL2 pathway is considered a relevant signal for the recruitment of TAMs and has been suggested as a therapeutic target in malignant gliomas. We found that TAMs of human GBM specimens and of a syngeneic glioma model express CCR2 to varying extents. Using a -deficient strain for glioma inoculation revealed a 30% reduction of TAMs intratumorally. This diminished immune cell infiltration occurred with augmented tumor volumes likely based on increased cell proliferation. Remaining TAMs in mice showed comparable surface marker expression patterns in comparison to wildtype mice, but expression levels of inflammatory transcription factors (, , ) and cytokines (, , ) were considerably affected. Furthermore, we demonstrated an impact on blood vessel integrity, while vascularization of tumors appeared similar between mouse strains. The higher stability and attenuated leakiness of the tumor vasculature imply improved sustenance of glioma tissue in mice. Additionally, despite TAMs residing in the perivascular niche in mice, their pro-angiogenic activity was reduced by the downregulation of . In conclusion, lacking CCR2 solely on tumor microenvironmental cells leads to enhanced tumor progression, whereby high numbers of TAMs infiltrate gliomas independently of the CCR2/CCL2 signal.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408933 | PMC |
http://dx.doi.org/10.3390/cancers12071882 | DOI Listing |
Heliyon
January 2025
Department of Otolaryngology Head and Neck Surgery, the Second People's Hospital of Shenzhen, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, 518035, China.
Background: Despite advancements in medical science, the 5-year survival rate for laryngeal squamous cell carcinoma remains low, posing significant challenges in clinical management. This study explores the evolution of key topics and trends in laryngeal cancer research. Bibliometric and knowledge graph analysis are utilized to assess contributions in treating this carcinoma and to forecast emerging research hotspots that may enhance future clinical outcomes.
View Article and Find Full Text PDFExp Hematol Oncol
January 2025
Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
Background: Radiotherapy is the primary treatment modality for most head and neck cancers (HNCs). Despite the addition of chemotherapy to radiotherapy to enhance its tumoricidal effects, almost a third of HNC patients suffer from locoregional relapses. Salvage therapy options for such recurrences are limited and often suboptimal, partly owing to divergent tumor and microenvironmental factors underpinning radioresistance.
View Article and Find Full Text PDFPurpose: Understanding the molecular mechanisms of adaptive regulation in the tumor microenvironment is crucial for precision therapy in hepatocellular carcinoma (HCC). We hypothesized that cargo proteins carried by extracellular vesicles (EVs) released in a hypoxic microenvironment might promote HCC progression by remodeling tumor-associated macrophages (TAMs).
Methods: EV protein analysis by label-free proteomics mass spectrometry of HCC cell lines of different tumor grades was performed.
Cancer Chemother Pharmacol
January 2025
Institute of Medicine, Chung-Shan Medical University, Taichung, 40201, Taiwan.
Objective: Based on our previous research, which demonstrated that elevated plasma endoglin (ENG) levels in lung cancer patients were associated with a better prognosis, increased sensitivity to pemetrexed, and enhanced tumor suppression, this study aims to validate these findings at the cellular level. The focus is on membrane and extracellular ENG and their influence on drug response and tumor cell behavior in non-small cell lung cancer (NSCLC) cells.
Methods: The correlation between ENG expression and pemetrexed-induced cytotoxicity in eight human non-squamous subtype NSCLC cell lines was analyzed.
Cells
January 2025
DIMEAS, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
Haematological malignancies comprise a diverse group of life-threatening systemic diseases, including leukaemia, lymphoma, and multiple myeloma. Currently available therapies, including chemotherapy, immunotherapy, and CAR-T cells, are often associated with important side effects and with the development of drug resistance and, consequently, disease relapse. In the last decades, it was largely demonstrated that the tumor microenvironment significantly affects cancer cell proliferation and tumor response to treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!