Background: Recent genetic technologies such as opto- and chemogenetics allow for the manipulation of brain circuits with unprecedented precision. Most studies employing these techniques have been undertaken in rodents, but a more human-homologous model for studying the brain is the nonhuman primate (NHP). Optimizing viral delivery of transgenes encoding actuator proteins could revolutionize the way we study neuronal circuits in NHPs. NEW METHOD: rAAV2-retro, a popular new capsid variant, produces robust retrograde labeling in rodents. Whether rAAV2-retro's highly efficient retrograde transport would translate to NHPs was unknown. Here, we characterized the anatomical distribution of labeling following injections of rAAV2-retro encoding opsins or DREADDs in the cortico-basal ganglia and oculomotor circuits of rhesus macaques.

Results: rAAV2-retro injections in striatum, frontal eye field, and superior colliculus produced local labeling at injection sites and robust retrograde labeling in many afferent regions. In every case, however, a few brain regions with well-established projections to the injected structure lacked retrogradely labeled cells. We also observed robust terminal field labeling in downstream structures.

Comparison With Existing Method(s): Patterns of labeling were similar to those obtained with traditional tract-tracers, except for some afferent labeling that was noticeably absent.

Conclusions: rAAV2-retro promises to be useful for circuit manipulation via retrograde transduction in NHPs, but caveats were revealed by our findings. Some afferently connected regions lacked retrogradely labeled cells, showed robust axon terminal labeling, or both. This highlights the importance of anatomically characterizing rAAV2-retro's expression in target circuits in NHPs before moving to manipulation studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7539563PMC
http://dx.doi.org/10.1016/j.jneumeth.2020.108859DOI Listing

Publication Analysis

Top Keywords

circuit manipulation
8
circuits nhps
8
robust retrograde
8
labeling
8
retrograde labeling
8
lacked retrogradely
8
retrogradely labeled
8
labeled cells
8
raav2-retro
5
raav2-retro rhesus
4

Similar Publications

Toward Large-Scale Photonic Chips Using Low-Anisotropy Thin-Film Lithium-Tantalate.

Adv Sci (Weinh)

January 2025

College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China.

Photonic manipulation of large-capacity data with the advantages of high speed and low power consumption is a promising solution for explosive growth demands in the era of post-Moore. A well-developed lithium-niobate-on-insulator (LNOI) platform has been widely explored for high-performance electro-optic (EO) modulators to bridge electrical and optical signals. However, the photonic waveguides on the x-cut LNOI platform suffer serious polarization-mode conversion/coupling issues because of strong birefringence, making it hard to realize large-scale integration.

View Article and Find Full Text PDF

Non-volatile electronic memory elements are very attractive for applications, not only for information storage but also in logic circuits, sensing devices and neuromorphic computing. Here, a ferroelectric film of guanine nucleobase is used in a resistive memory junction sandwiched between two different ferromagnetic films of Co and CoCr alloys. The magnetic films have an in-plane easy axis of magnetization and different coercive fields whereas the guanine film ensures a very long spin transport length, at 100 K.

View Article and Find Full Text PDF

The disencapsulated mind: A premotor theory of human imagination.

Psychol Rev

January 2025

Department of Psychological and Brain Sciences, Dartmouth College.

Our premodern ancestors had perceptual, motoric, and cognitive functional domains that were modularly encapsulated. Some of these came to interact through a new type of cross-modular binding in our species. This allowed previously domain-dedicated, encapsulated motoric and sensory operators to operate on operands for which they had not evolved.

View Article and Find Full Text PDF

Programmable Electromagnetic Wave Absorption via Tailored Metal Single Atom-Support Interactions.

Adv Mater

January 2025

Laboratory of Advanced Materials, Institute of Optoelectronics, Fudan University, Shanghai, 200438, P. R. China.

Metal single atoms (SA)-support interactions inherently exhibit significant electrochemical activity, demonstrating potential in energy catalysis. However, leveraging these interactions to modulate electronic properties and extend application fields is a formidable challenge, demanding in-depth understanding and quantitative control of atomic-scale interactions. Herein, in situ, off-axis electron holography technique is utilized to directly visualize the interactions between SAs and the graphene surface.

View Article and Find Full Text PDF

The intentional manipulation of carrier characteristics serves as a fundamental principle underlying various energy-related and optoelectronic semiconductor technologies. However, achieving switchable and reversible control of the polarity within a single material to design optimized devices remains a significant challenge. Herein, we successfully achieved dramatic reversible p-n switching during the semiconductor‒semiconductor phase transition in BiI via pressure, accompanied by a substantial improvement in their photoelectric properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!