A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Corneal Stiffness and Collagen Cross-Linking Proteins in Glaucoma: Potential for Novel Therapeutic Strategy. | LitMetric

Biomechanical properties of the cornea have recently emerged as clinically useful in risk assessment of diagnosing glaucoma and predicting disease progression. Corneal hysteresis (CH) is a dynamic tool, which measures viscoelasticity of the cornea. It represents the overall deformability of the cornea, and reduces significantly with age. Low CH has also been associated with optic nerve damage and progression of visual field loss in glaucoma. The extracellular matrix (ECM) constituents of the cornea, trabecular meshwork (TM), sclera, and lamina cribrosa (LC) are similar, as they are predominantly made of fibrillar collagen. This suggests that biomechanical changes in the cornea may also reflect optic nerve compliance in glaucomatous optic neuropathy, and in the known increase of TM tissue stiffness in glaucoma. Increased collagen cross-linking contributes to tissue stiffening throughout the body, which is observed in normal aging and occurs at an accelerated rate in systemic conditions such as fibrotic and cardiovascular diseases, cancer, and glaucoma. We reviewed 3 ECM cross-linking proteins that may have a potential role in the disease process of increased tissue stiffness in glaucoma, including lysyl oxidase (LOX)/lysyl oxidase-like 1 (LOXL1), tissue transglutaminase (TG2), and advanced glycation end products. We also report elevated messenger RNA (mRNA) levels of LOX and TG2 in glaucoma LC cells to support our proposed theory that increased levels of cross-linking proteins in glaucoma play a role in LC tissue stiffness. We highlight areas of research that are needed to better understand the role of cross-linking in glaucoma pathogenesis, leading potentially to a novel therapeutic strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1089/jop.2019.0118DOI Listing

Publication Analysis

Top Keywords

cross-linking proteins
12
tissue stiffness
12
glaucoma
9
collagen cross-linking
8
proteins glaucoma
8
novel therapeutic
8
therapeutic strategy
8
optic nerve
8
stiffness glaucoma
8
cross-linking
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!