Competitive Nucleation Mechanism for CsPbBr Perovskite Nanoplatelet Growth.

J Phys Chem Lett

Mathematical Institute, Woodstock Road, Andrew Wiles Building, University of Oxford, Oxford, OX2 6GG, U.K.

Published: August 2020

We analyze nucleation-controlled nanocrystal growth in a solution containing surface-binding molecular ligands, which can also nucleate compact layers on the crystal surfaces. We show that, if the critical nucleus size for ligands is larger and the nucleation barrier is lower than those for crystal atoms, the ligands nucleate faster than the atoms on relatively wide crystal facets but much slower, if at all, on narrow facets. Such competitive nucleation of ligands and atoms results in ligands covering predominantly wider facets, thus excluding them from the growth process, and acts as a selection mechanism for the growth of crystals with narrower facets, the so-called nanoplatelets. The theory is confirmed by Monte Carlo simulations and validated experimentally for CsPbBr nanoplatelets grown from solution. We find that the anisotropic crystal growth is controlled by the growth temperature and the strength of surface bonding for the passivating molecular ligands.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.0c01794DOI Listing

Publication Analysis

Top Keywords

competitive nucleation
8
molecular ligands
8
ligands nucleate
8
atoms ligands
8
growth
6
ligands
6
nucleation mechanism
4
mechanism cspbbr
4
cspbbr perovskite
4
perovskite nanoplatelet
4

Similar Publications

Intermetallic Layers with Tuned Na Nucleation and Transport for Anode-Free Sodium Metal Batteries.

Nano Lett

January 2025

Department of Applied Physics and Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China.

Sodium metal batteries without pre-deposited Na (anode-free) and with a limited amount of Na metal (anode-less) have attracted increasing attention due to their competitive energy density and the high abundance of sodium. However, severe interfacial issues result in poor cycling stability and low Coulombic efficiency. Here, the lightweight interphase layers composed of intermetallic nanoparticles (Sn-Cu and Sn-Ni) are applied to improve Na plating/stripping behaviors.

View Article and Find Full Text PDF

Selective gold extraction from e-waste leachate via sulfur-redox mechanisms using sulfhydryl-functionalized MOFs.

Water Res

January 2025

State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China. Electronic address:

Urban mining of precious metals from electronic waste (e-waste) offers a dual advantage by addressing solid waste management challenges and supplying high-value metals for diverse applications. However, traditional extraction methods generally suffer from poor selectivity and limited capacity in complex acidic leachate. Herein, we present a sulfhydryl-functionalized zirconium-based metal-organic framework (Zr-MSA-AA) as a recyclable and highly selective adsorbent for efficient gold recovery.

View Article and Find Full Text PDF

Stretchable Primary-Blue Color-Conversion Layer: Crystallization of Phase-Engineered Perovskite Nanocrystals in an Organic Matrix.

ACS Nano

January 2025

Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.

Although the use of ultraviolet (UV) light-emitting diode backlight with red, green, and blue color-conversion layers (CCLs) in displays simplifies the manufacturing process and improves display uniformity, research on blue CCLs remains limited and has been mostly reported in the sky-blue region (> 470 nm), which is insufficient to satisfy the Rec. 2020 color standard. As halide perovskites offer a high extinction coefficient, color purity, and photoluminescence quantum yield (PLQY), they become highly competitive color-converting materials for CCLs.

View Article and Find Full Text PDF

Phase separation plays a crucial role in many natural and industrial processes, such as the formation of clouds and minerals and the distillation of crude oil. In metals and alloys, phase separation is an important approach often utilized to improve their mechanical strength for use in construction, automobile, and aerospace manufacturing. Despite its importance in many processes, the atomic details of phase separation are largely unknown.

View Article and Find Full Text PDF

Biomimetic calcification is a micro-crystallization process that mimics the natural biomineralization process, where biomacromolecules regulate the formation of inorganic minerals. In this study, it is presented that a protein-assisted biomimetic calcification method for the in situ synthesis of nitrogen-doped metal-organic framework (MOF) materials. A series of unique core-shell structures are created by utilizing proteins as templates and guiding agents in the nucleation step, creating ideal conditions for shell growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!