The present study aimed to estimate the clinical performance of non-invasive prenatal testing (NIPT) based on high-throughput sequencing method for the detection of foetal chromosomal deletions and duplications. A total of 6348 pregnant women receiving NIPT using high-throughput sequencing method were included in our study. They all conceived naturally, without twins, triplets or multiple births. Individuals showing abnormalities in NIPT received invasive ultrasound-guided amniocentesis for chromosomal karyotype and microarray analysis at 18-24 weeks of pregnancy. Detection results of foetal chromosomal deletions and duplications were compared between high-throughput sequencing method and chromosomal karyotype and microarray analysis. Thirty-eight individuals were identified to show 51 chromosomal deletions/duplications via high-throughput sequencing method. In subsequent chromosomal karyotype and microarray analysis, 34 subchromosomal deletions/duplications were identified in 26 pregnant women. The observed deletions and duplications ranged from 1.05 to 17.98 Mb. Detection accuracy for these deletions and duplications was 66.7%. Twenty-one deletions and duplications were found to be correlated with the known abnormalities. NIPT based on high-throughput sequencing technique is able to identify foetal chromosomal deletions and duplications, but its sensitivity and specificity were not explored. Further progress should be made to reduce false-positive results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7520324 | PMC |
http://dx.doi.org/10.1111/jcmm.15593 | DOI Listing |
Natural killer (NK) cells have proven to be safe and effective immunotherapies, associated with favorable treatment responses in chronic myeloid leukemia (CML). Augmenting NK cell function with oncological drugs could improve NK cell-based immunotherapies. Here, we used a high-throughput drug screen consisting of over 500 small-molecule compounds to systematically evaluate the effects of oncological drugs on primary NK cells against CML cells.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Endoscopy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
This study enrolled 10 patients diagnosed with premalignant lesions and early-stage gastric cardia adenocarcinoma (GCA), confirmed through endoscopic examination. These patients were subjected to next-generation sequencing (NGS) using a customized 1123-gene panel to identify genetic alterations and signaling pathways. The results were compared to stage IIB to IV GCA samples from the cancer genome atlas (TCGA) and a cohort of Hong Kong patients.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China.
Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by reduced platelet levels and heightened susceptibility to bleeding resulting from augmented autologous platelet destruction and diminished thrombopoiesis. Although antibody-mediated autoimmune reactions are widely recognized as primary factors, the precise etiological agents that trigger ITP remain unidentified. The pathogenesis of ITP remains unclear owing to the absence of comprehensive high-throughput data, except for the belated emergence of autoreactive antibodies.
View Article and Find Full Text PDFVet Med Sci
January 2025
Department of Genetics, Faculty of Veterinary Medicine, Yozgat Bozok University, Yozgat, Türkiye.
Background: Determining the complete genome sequence data of adenoviruses has recently become greatly important due to their use by scientists as vectors in cancer studies and other fields, including vaccine development. However, the GenBank database currently has few complete genome sequences of adenoviruses, which are known for their large genomes. To address this gap, we analysed next-generation sequencing data obtained from our previous study to provide the complete genome sequence of the canine adenovirus-2 strain.
View Article and Find Full Text PDFArch Virol
January 2025
Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135, Torino, Italy.
Here, we report the complete genome sequence of a new carlavirus causing mosaic on mint plants in Italy, which we have tentatively named "mint virus C" (MVC). Flexuous particles of around 600 nm were observed using transmission electron microscopy, and next-generation sequencing was performed to determine the nucleotide sequence of the MVC genome, which was found to be 8558 nt long, excluding the poly(A) tail, and shows the typical organization of a carlavirus. The putative proteins encoded by MVC are 44-56% identical to the closest matches in the NCBI database, suggesting that MVC should be considered a member of a new species in the genus Carlavirus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!