Granular corneal dystrophy type 2 (GCD2) is the most common form of transforming growth factor β-induced (TGFBI) gene-linked corneal dystrophy and is pathologically characterized by the corneal deposition of mutant-TGFBIp. The defective autophagic degradation of pathogenic mutant-TGFBIp has been shown in GCD2; however, its exact mechanisms are unknown. To address this, we investigated lysosomal functions using corneal fibroblasts. Levels of cathepsins K and L (CTSK and CTSL) were significantly decreased in GCD2 cells, but of cathepsins B and D (CTSB and CTSD) did not change. The maturation of the pro-enzymes to their active forms (CTSB, CTSK and CTSL) was inhibited in GCD2 cells. CTSL enzymes directly degraded both LC3 (autophagosomes marker) and mutant-TGFBIp. Exogenous CTSL expression dramatically reduced mutant-TGFBIp in GCD2 cells, but not TGFBIp in WT cells. An increased lysosomal pH and clustered lysosomal perinuclear position were found in GCD2 cells. Transcription factor EB (TFEB) levels were significantly reduced in GCD2 cells, compared to WT. Notably, exogenous TFEB expression improved mutant-TGFBIp clearance and lysosomal abnormalities in GCD2 cells. Taken together, lysosomal dysfunction in the corneal fibroblasts underlies the pathogenesis of GCD2, and TFEB has a therapeutic potential in the treatment of GCD2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521267 | PMC |
http://dx.doi.org/10.1111/jcmm.15646 | DOI Listing |
Microb Pathog
February 2025
Centro de Investigación y Desarrollo en Ciencia y Tecnología de los Alimentos (CCT- La Plata CONICET, CIC-PBA, Facultad de Ciencias Exactas, UNLP), Argentina; Cátedra de Microbiología. Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP), Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina. Electronic address:
Clostridioides difficile is a spore-forming pathogen capable of causing severe disease in humans. Critical stages in the biological cycle of this microorganism include sporogenesis/germination and toxin production by vegetative cells. Antagonizing these pivotal events could aid in prevention and treatment to manage this pathogen.
View Article and Find Full Text PDFbioRxiv
October 2024
Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093.
The mutants designated (cell lysis) cause cell lysis at elevated temperatures. The mutation, previously localized to an 80 kilobase region between and on the right arm of chromosome VII, has been used for mutation mapping and in recombination assays, but its genetic identity has remained unknown. Whole genome sequencing of mutant and wild-type strains revealed four missense mutations specific to the mutant strain in the - interval, three of these missense mutations affected essential genes.
View Article and Find Full Text PDFGenes (Basel)
February 2023
Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
The progressive degeneration of granular corneal dystrophy type 2 (GCD2) corneal fibroblasts is associated with altered mitochondrial function, but the underlying mechanisms are incompletely understood. We investigated whether an imbalance of mitochondrial dynamics contributes to mitochondrial dysfunction of GCD2 corneal fibroblasts. Transmission electron microscopy revealed several small, structurally abnormal mitochondria with altered cristae morphology in GCD2 corneal fibroblasts.
View Article and Find Full Text PDFAutophagy
April 2022
Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
J Cell Mol Med
September 2020
Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea.
Granular corneal dystrophy type 2 (GCD2) is the most common form of transforming growth factor β-induced (TGFBI) gene-linked corneal dystrophy and is pathologically characterized by the corneal deposition of mutant-TGFBIp. The defective autophagic degradation of pathogenic mutant-TGFBIp has been shown in GCD2; however, its exact mechanisms are unknown. To address this, we investigated lysosomal functions using corneal fibroblasts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!