Small molecule-based modulation of a triple helix in the long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been proposed as an attractive avenue for cancer treatment and a model system for understanding small molecule:RNA recognition. To elucidate fundamental recognition principles and structure-function relationships, we designed and synthesized nine novel analogs of a diphenylfuran-based small molecule DPFp8, a previously identified lead binder of MALAT1. We investigated the role of recognition modalities in binding and in silico studies along with the relationship between affinity, stability and in vitro enzymatic degradation of the triple helix. Specifically, molecular docking studies identified patterns driving affinity and selectivity, including limited ligand flexibility, as observed by ligand preorganization and 3D shape complementarity for the binding pocket. The use of differential scanning fluorimetry allowed rapid evaluation of ligand-induced thermal stabilization of the triple helix, which correlated with decreased in vitro degradation of this structure by the RNase R exonuclease. The magnitude of stabilization was related to binding mode and selectivity between the triple helix and its precursor stem loop structure. Together, this work demonstrates the value of scaffold-based libraries in revealing recognition principles and of raising broadly applicable strategies, including functional assays, for small molecule-RNA targeting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7430642PMC
http://dx.doi.org/10.1093/nar/gkaa585DOI Listing

Publication Analysis

Top Keywords

triple helix
20
stability vitro
8
vitro degradation
8
recognition principles
8
triple
5
helix
5
regulation malat1
4
malat1 triple
4
helix stability
4
degradation diphenylfurans
4

Similar Publications

The Effect of Cellulose Nanocrystals on the Molecular Organization, Thermomechanical, and Shape Memory Properties of Gelatin-Matrix Composite Films.

Gels

November 2024

Biopolymer Research & Engineering Laboratory (BIOPREL), Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de Los Andes, Santiago 7550000, Chile.

Gelatin is a natural hydrocolloid with excellent film-forming properties, high processability, and tremendous potential in the field of edible coatings and food packaging. However, its reinforcing by materials such as cellulose nanocrystals (CNC) is often necessary to improve its mechanical behavior, including shape memory properties. Since the interaction between these polymers is complex and its mechanism still remains unclear, this work aimed to study the effect of low concentrations of CNC (2, 6, and 10 weight%) on the molecular organization, thermomechanical, and shape memory properties in mammalian gelatin-based composite films at low moisture content (~10 weight% dry base).

View Article and Find Full Text PDF

Preparation, characterization and in vitro antioxidant activities of a homogeneous polysaccharide from Prunella vulgaris.

Fitoterapia

December 2024

State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China. Electronic address:

Prunella vulgaris is a medicinal and edible homologous plant, commonly used as a folk medicine to treat diseases. The Prunella vulgaris polysaccharides (PVPs) are reported with the antioxidant activity. This work was designed to isolate, characterize, and test the antioxidant activity of purified PVPs from P.

View Article and Find Full Text PDF

The foaming and polarization of macrophages are pivotal in the formation and development of atherosclerosis. This study delved into the structure and membrane pattern recognition receptors (PRRs) of the neutral polysaccharide fraction (PPRLMF-1), investigating effects of PPRLMF-1 and acid polysaccharide fraction (PPRLMF-2) on the foaming and polarization of RAW264.7 macrophage cells, and exploring their underlying mechanisms.

View Article and Find Full Text PDF

Study on the Extraction Technology and Antioxidant Capacity of Polysaccharides.

Foods

December 2024

School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China.

A red alga named was explored, and the extraction technology and antioxidant capacity of its polysaccharides were investigated. The crude polysaccharides were extracted using the ultrasound-assisted water extraction method, precipitated by alcohol, and purified using the trichloroacetic acid method. Subsequently, the scavenging rates of polysaccharides on hydroxyl, , and free radicals, were determined both prior to and following purification to evaluate their antioxidant activity.

View Article and Find Full Text PDF

TFAP2A activates CTHRC1 to influence the migration of lung adenocarcinoma cells by modulating fatty acid metabolism.

Prostaglandins Other Lipid Mediat

December 2024

Department of Thoracic Surgery, Anyang Tumor Hospital, Anyang 455000, China. Electronic address:

Background: Tumor metastasis is the main cause of death in lung adenocarcinoma (LAC) patients. It is known that the collagen triple helix repeats containing 1 (CTHRC1) protein is implicated in tissue remodeling and is tightly linked to the carcinogenesis and metastasis of solid tumors. However, the functional role of CTHRC1 and its potential mechanisms in LAC cell metastasis have not been fully explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!