Developmental mechanisms regulating the formation of smooth muscle layers in the mouse uterus†.

Biol Reprod

Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan.

Published: October 2020

Uterine smooth muscle cells differentiate from mesenchymal cells, and gap junctions connect the muscle cells in the myometrium. At the neonatal stage, a uterine smooth muscle layer is situated away from the epithelium when smooth muscle cells are grafted near the epithelium, suggesting that the epithelium plays an important role in differentiation, proliferation, and/or migration of smooth muscle cells. In this study, developmental mechanisms regulating the formation of the smooth muscle layers in the mouse uterus were analyzed using an in vitro culture model. Differentiation of smooth muscle cells occurs at a neonatal stage because ACTA2 gene expression was increased at the outer layer, and GJA1 was not expressed in cellular membranes of uterine smooth muscle cells by postnatal day 15. To analyze the effects of the epithelium on the differentiation of smooth muscle cells, a bulk uterine mesenchymal cell line was established from p53-/- mice at postnatal day 3 (P3US cells). Co-culture with Müllerian ductal epithelial cells (E1 cells) induced repulsive migration of ACTA2-positive cells among bulk P3US cells from E1 cells, but it had no effects on the migration of any of 100% ACTA2-positive or negative smooth muscle cell lines cloned from P3US cells. Thus, uterine epithelial cells indirectly affected the repulsive migration of smooth muscle cells via mesenchymal cells. Conditioned medium by E1 cells inhibited differentiation into smooth muscle cells of clonal cells established from P3US cells. Therefore, the uterine epithelium inhibits the differentiation of stem-like progenitor mesenchymal cells adjacent to the epithelium into smooth muscle cells.

Download full-text PDF

Source
http://dx.doi.org/10.1093/biolre/ioaa104DOI Listing

Publication Analysis

Top Keywords

smooth muscle
52
muscle cells
40
cells
24
p3us cells
16
muscle
14
smooth
13
uterine smooth
12
mesenchymal cells
12
differentiation smooth
12
developmental mechanisms
8

Similar Publications

Role of Ciliary Neurotrophic Factor in Angiotensin II-Induced Hypertension.

Hypertension

January 2025

Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany (S.A.P., I.Q., D. Arifaj, M.K., D. Argov, L.C.R., J.S.).

Background: Ciliary neurotrophic factor (CNTF), mainly known for its neuroprotective properties, belongs to the IL-6 (interleukin-6) cytokine family. In contrast to IL-6, the effects of CNTF on the vasculature have not been explored. Here, we examined the role of CNTF in AngII (angiotensin II)-induced hypertension.

View Article and Find Full Text PDF

Multiple Aneurysmal Arterial Disease (MAD) is an extremely rare arterial vascular condition and is produced by an abnormal alteration of smooth muscle cells and neutrophils, producing a multiple-aneurysmal degeneration. We present the case of a 36-year-old patient with a MAD in the cerebral territory and extremities with no surgical indication; however, with an aneurysm of the right inferior renal segmental artery, inferior mesenteric artery, left common iliac artery, and right internal iliac artery with surgical indication. An open approach with single-stage surgical repair, including graft interposition, bypass, exclusion, and vascular reimplantation, was performed.

View Article and Find Full Text PDF

Recently, the incidence rate and mortality of various acute or chronic vascular occlusive diseases have increased yearly. As one of the most effective measures to treat them, vascular stents have been widely studied by researchers, and presently, the most commonly used is a drug-eluting stent, which reduces the process of rapid endothelialization because the drug is not selective. Fortunately, with the discovery and exploration of micro-nanostructures that can regulate cells selectively, reducing the incidence of "intravascular restenosis" and achieving rapid endothelialization simultaneously are possible through a special structure that cannot only improve endothelial cells (ECs), but also inhibit smooth muscle cells (SMCs).

View Article and Find Full Text PDF

The small molecule peroxiredoxin mimetics restore growth factor signalings and reverse vascular remodeling.

Free Radic Biol Med

January 2025

Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea. Electronic address:

Epidithio-diketopiperazine (ETP) compound is the family of natural fungal metabolites that are known to exert diverse biological effects, such as immunosuppression and anti-cancer activity, in higher animals. However, an enzyme-like catalytic activity or function of the ETP derivatives has not been reported. Here, we report the generation of novel thiol peroxidase mimetics that possess peroxide-reducing activity through strategic derivatization of the core ETP ring structure.

View Article and Find Full Text PDF

Background: Apolipoprotein C3 (apo C3) is primarily secreted by the liver and is involved in promoting sterile inflammation and organ damage under pathological conditions. Previous studies have shown that apo C3 is abundant in the plasma exosomes of patients with aortic dissection (AD), but its specific role in AD remains unclear.

Methods And Results: In vivo, adeno-associated virus was used to knock down hepatic apo C3 expression in an AD mouse model to assess the impact of liver-derived apo C3 on the development of AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!