This in vitro study evaluated cell viability and metabolism, nitric oxide release and production of two chemokines and one cytokine by cultured human dental pulp fibroblasts (HDPF) in contact with two glass ionomer cements (Ketac Molar-KM and Vitrebond-VB), Single Bond (SB) and calcium hydroxide (Dycal-DY). Cultures of HDPF were established by means of an explant technique. The specimens were prepared under sterile conditions and in disks measuring 5 mm x 2 mm obtained from a prefabricated mold and placed on a permeable membrane to avoid direct contact with the cells. Cytotoxicity was assessed by Trypan Blue exclusion method and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nitric oxide release in cell supernatant was detected by the Griess Method whereas stromal derived factor-1 alpha (SDF-1α or CXCL12), chemokine (C-X-C motif) ligand 8 [Interleukin 8 (IL-8 or CXCL8)] and interleukin-6 (IL-6) were detected by ELISA. RT-qPCR was employed for gene expression analysis. Statistical analyses were performed by One-way ANOVA followed by Tukey's post hoc test for materials independent of the time, and Two-way ANOVA followed by Bonferroni correction test for the comparisons between materials and experimental time (p<0.05). Cytotoxic tests showed significant differences only for DY. Protein levels and mRNA expression were significantly increased for IL-8 for both periods of time. IL-6 production increased when fibroblasts were stimulated by KM. SDF-1α protein production and mRNA expression were not affected by any of the materials. There was a decrease in nitrate/nitrite levels only for KM. Although DY caused intense cell death and did not stimulate the production of the inflammatory mediators evaluated in this work, it is known that this event seems to be fundamental for the process of repair of the pulp tissue and formation of mineralized barrier. KM and VB increased production of proteins related to the inflammatory process, thus favoring tissue repair. Therefore, although these glass ionomer cements did not lead to large cell death, they should be used with caution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/0103-6440202003523 | DOI Listing |
Clin Adv Periodontics
December 2024
Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
Background: Recombinant human fibroblast growth factor-2 (rhFGF-2) has been shown to effectively promote the formation of new periodontal tissues, and its efficacy has been demonstrated in clinical settings. Moreover, the clinical and radiographic outcomes in the treatment of periodontal infrabony defects can be improved by using rhFGF-2 in combination with a bone substitute. Here, we present a case of four-wall bone defect in a tooth treated by combination regenerative therapy using rhFGF-2 and beta-tricalcium phosphate (β-TCP).
View Article and Find Full Text PDFJ Clin Med
November 2024
Department of Pediatric Dentistry, Asahi University School of Dentistry, Gifu 501-0296, Japan.
Dental pulp (DP) is a connective tissue composed of various cell types, including fibroblasts, neurons, adipocytes, endothelial cells, and odontoblasts. It contains a rich supply of pluripotent stem cells, making it an important resource for cell-based regenerative medicine. However, current stem cell collection methods rely heavily on the enzymatic digestion of dissected DP tissue to isolate and propagate primary cells, which often results in low recovery rates and reduced cell survival, particularly from deciduous teeth.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Laboratoire des Multimatériaux et Interfaces UMR CNRS 5615, Universite Claude Bernard Lyon 1, 6 rue Victor Grignard, 69622 Villeurbanne, France.
Hydrogels are promising scaffolds for tissue regeneration, and borosilicate glass particles have demonstrated potential in enhancing the biological behaviour of dental pulp cells. However, the specific morphological characteristics of dental lesions and the diverse requirements of dental tissues require biocompatible, bioactive, and shapeable scaffolds. This study aimed to evaluate the in vitro biological behaviour of human gingival fibroblasts (HGFs) in contact with an experimental aluminum-free borosilicate glass-functionalized hydrogel.
View Article and Find Full Text PDFJ Adv Res
December 2024
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, No.145 Western Changle Road, Xi'an, Shaanxi 710032, China. Electronic address:
Introduction: Aging influences the regenerative and reparative functions of dental pulp, and an in-depth and complete understanding of aged dental pulp is highly important.
Objective: This study aimed to explore the heterogeneity of young and aged dental pulp tissue via single-cell RNA sequencing (scRNA-seq), search novel markers of aged dental pulp, and further explore their mechanism.
Methods: ScRNA-seq was employed to analyze the heterogeneity of young and aged dental pulp tissue, and immunohistochemical staining was used to detect new marker Insulin-like Growth Factor Binding Protein 7 (IGFBP7) in aged dental pulp.
Eur J Dent
December 2024
Faculty of Dentistry, Universitas Muhammadiyah Surakarta, Surakarta, Central Java, Indonesia.
Objective: The purpose of the study was to evaluate the efficacy of calcium hydroxide (Ca(OH)) and propolis in pulp capping for dental caries treatment, focusing on dentin growth parameters. The study also aims to determine the role of propolis as a natural adjuvant therapy in enhancing reparative dentin development while emphasizing the importance of proper technique and material preparation with markers for the expression of beta-catenin, bFGF, CD105, and BMP4.
Materials And Methods: The left bottom molar teeth from 28 Wistar rats were divided into four groups.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!