Krypton planar laser-induced fluorescence (Kr PLIF) was demonstrated at a repetition rate of 100 kHz. To achieve this increased rate, a custom injection-seeded optical parametric oscillator was built to efficiently convert the 355 nm output of a high-energy, high-repetition-rate nanosecond burst-mode laser to 212.56 nm to excite Kr from the ground to the 5[1/2] electronic state. Successful tracking of flow structures and mixture fraction was demonstrated using detection speeds 100 times greater than previously attained with a femtosecond laser source. The increase in repetition rate makes time-resolved Kr PLIF relevant for high-speed flows in particular.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.395389 | DOI Listing |
J Elect Propuls
December 2024
Georgia Institute of Technology, Atlanta, GA 30332 USA.
A previous companion paper introduced a current pathways model that represents the electrical coupling between the Hall effect thruster (HET) and the ground-based vacuum test facility operational environment. In this work, we operated a 7-kW class HET at 4.5 kW, 15 A and 6 kW, 20 A on krypton to quantify aspects of the current pathways model to characterize the role metal vacuum chambers play in the thruster's discharge circuit as a function of discharge current.
View Article and Find Full Text PDFChemphyschem
June 2023
Department of Chemistry, Maynooth University, National University of Ireland -, Maynooth, County Kildare, Ireland.
Molecular dynamics with quantum transitions approach is employed to simulate the spectroscopic characteristics of the P ↔ S transitions in atomic zinc and cadmium in order to gain insight into the excited state behavior of these atoms isolated in solid rare gases neon, argon, and krypton. The absorption and emission spectra are simulated. Non-radiative processes play a fundamental role in the transfer of population among the three electronic states initially accessed in absorption.
View Article and Find Full Text PDFThis paper presents multi-path, two-photon excitation cross-section calculations for krypton, using first-order perturbation theory. For evaluation of the two-photon-transition matrix element, this paper formulates the two-photon cross-section calculation as a matrix mechanics problem. From a finite basis of states, consisting of 4, 5, 6, 7, 5, 6, 4, 5, and 6 orbitals, electric dipole matrix elements are constructed, and a Green's function is expressed as a truncated, spectral expansion of solutions, satisfying the Schrödinger equation.
View Article and Find Full Text PDFKrypton planar laser-induced fluorescence (Kr PLIF) was demonstrated at a repetition rate of 100 kHz. To achieve this increased rate, a custom injection-seeded optical parametric oscillator was built to efficiently convert the 355 nm output of a high-energy, high-repetition-rate nanosecond burst-mode laser to 212.56 nm to excite Kr from the ground to the 5[1/2] electronic state.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
November 2019
Department of Clinical Sciences, Clinical Physiology and Nuclear Medicine, University of Lund, Lund, Sweden.
These guidelines update the previous EANM 2009 guidelines on the diagnosis of pulmonary embolism (PE). Relevant new aspects are related to (a) quantification of PE and other ventilation/perfusion defects; (b) follow-up of patients with PE; (c) chronic PE; and (d) description of additional pulmonary physiological changes leading to diagnoses of left ventricular heart failure (HF), chronic obstructive pulmonary disease (COPD) and pneumonia. The diagnosis of PE should be reported when a mismatch of one segment or two subsegments is found.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!