Diabetes Causes Dysfunctional Dopamine Neurotransmission Favoring Nigrostriatal Degeneration in Mice.

Mov Disord

Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid, Madrid, Spain.

Published: September 2020

Background: Numerous studies indicate an association between neurodegenerative and metabolic diseases. Although still a matter of debate, growing evidence from epidemiological and animal studies indicate that preexisting diabetes increases the risk to develop Parkinson's disease. However, the mechanisms of such an association are unknown.

Objectives: We investigated whether diabetes alters striatal dopamine neurotransmission and assessed the vulnerability of nigrostriatal neurons to neurodegeneration.

Methods: We used streptozotocin-treated and genetically diabetic db/db mice. Expression of oxidative stress and nigrostriatal neuronal markers and levels of dopamine and its metabolites were monitored. Dopamine release and uptake were assessed using fast-scan cyclic voltammetry. 6-Hydroxydopamine was unilaterally injected into the striatum using stereotaxic surgery. Motor performance was scored using specific tests.

Results: Diabetes resulted in oxidative stress and decreased levels of dopamine and its metabolites in the striatum. Levels of proteins regulating dopamine release and uptake, including the dopamine transporter, the Girk2 potassium channel, the vesicular monoamine transporter 2, and the presynaptic vesicle protein synaptobrevin-2, were decreased in diabetic mice. Electrically evoked levels of extracellular dopamine in the striatum were enhanced, and altered dopamine uptake was observed. Striatal microinjections of a subthreshold dose of the neurotoxin 6-hydroxydopamine in diabetic mice, insufficient to cause motor alterations in nondiabetic animals, resulted in motor impairment, higher loss of striatal dopaminergic axons, and decreased neuronal cell bodies in the substantia nigra.

Conclusions: Our results indicate that diabetes promotes striatal oxidative stress, alters dopamine neurotransmission, and increases vulnerability to neurodegenerative damage leading to motor impairment. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7818508PMC
http://dx.doi.org/10.1002/mds.28124DOI Listing

Publication Analysis

Top Keywords

dopamine neurotransmission
12
oxidative stress
12
dopamine
10
studies indicate
8
levels dopamine
8
dopamine metabolites
8
dopamine release
8
release uptake
8
diabetic mice
8
motor impairment
8

Similar Publications

Trace amine signaling in zebrafish models: CNS pharmacology, behavioral regulation and translational relevance.

Eur J Pharmacol

January 2025

Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia; Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China. Electronic address:

Tyramine, β-phenylethylamine, octopamine and other trace amines are endogenous substances recently recognized as important novel neurotransmitters in the brain. Trace amines act via multiple selective trace amine-associated receptors (TAARs) of the G protein-coupled receptor family. TAARs are expressed in various brain regions and modulate neurotransmission, neuronal excitability, adult neurogenesis, cognition, mood, locomotor activity and olfaction.

View Article and Find Full Text PDF

Hinokinin Decreases Methamphetamine-Induced Hyperlocomotion via the Regulatory Effects on Dopamine Levels.

ACS Chem Neurosci

January 2025

College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea.

The global abuse of stimulant methamphetamine (METH) imposes a significant social burden. Despite this, effective therapeutic interventions for mitigating the harmful effects associated with METH-induced central nervous system (CNS) stimulation remain elusive. (hinoki), containing hinokinin as its active constituent, has been identified to exhibit CNS depressant properties.

View Article and Find Full Text PDF

Lumateperone is a novel antipsychotic recently approved for the treatment of schizophrenia. Its unique pharmacological profile includes modulation of serotonergic, dopaminergic, and glutamatergic neurotransmission, differentiating it from other second-generation antipsychotics. This paper explores the pharmacological features and clinical potential of lumateperone across neuropsychiatric conditions.

View Article and Find Full Text PDF

Background: Psychosis, marked by detachment from reality, includes symptoms like hallucinations and delusions. Traditional herbal remedies like kratom are gaining attention for psychiatric conditions. This was aimed at comprehending the molecular mechanisms of Kratom's antipsychotic effects utilizing a multi-modal computational approach.

View Article and Find Full Text PDF
Article Synopsis
  • Isopropylated phenyl phosphates (IPP) are organophosphate flame retardants used in various products, but their leaching raises toxicity concerns due to limited toxicological studies.
  • Using zebrafish embryos, the study found significant biological disruptions, including morphological changes and alterations in dopamine levels, alongside behavioral deficits at low concentrations.
  • Further analysis indicated IPP inhibits retinoic acid receptor activity and caused hypermethylation in embryos, with distinct impacts observed in the eyes, revealing changes in genes related to nervous system functions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!