The characterization of two novel neotropical primate papillomaviruses supports the ancient within-species diversity model.

Virus Evol

Laboratório de Diversidade e Doenças Virais, Departamento de Genética, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, Postal Code 21941-902, Rio de Janeiro, Brazil.

Published: January 2020

Papillomaviruses (PVs) are non-enveloped icosahedral viruses with a circular double-stranded DNA genome of ∼8,000 base pairs (bp). More than 200 different PV types have been identified to date in humans, which are distributed in five genera, with several strains associated with cancer development. Although widely distributed in vertebrates, Neotropical Primates (NP) PV infection was described for the first time only in 2016. Currently, four complete genomes of NP PVs have been characterized, three from (SscPV1 to SscPV3) and one from (AgPV1). In this work, we describe two novel PV strains infecting (provisionally named CpenPV1 and CpenPV2), using anal swab samples from animals residing at the Brasilia Primatology Center and next generation sequencing. The genomes of CpenPV1 (7,288 bp; 41.5% guanine-cytosine content - GC) and CpenPV2 (7,250 bp; 40.7% GC) contain the characteristic open reading frames (ORFs) for the early (E6, E7, E1, E2, and E4) and late (L2 and L1) PV genes. The L1 ORFs, commonly used for phylogenetic identification, share 76 per cent similarity with each other and differ 32 per cent from any other known PV, indicating that these new strains meet the criteria for defining novel species. PV genes phylogenetic variance was analyzed and different degrees of saturation revealed similar levels of topological heterogeneity, ruling out saturation as primary etiological factor for this phenomenon. Interestingly, the two CpenPV strains form a monophyletic clade within the genus (provisionally named ). Unlike for other NP PV strains, which grouped into a new sister genus of , this is the first report of NP PV strains grouping into a genus previously considered to exclusively comprise Old World Primates (OWP) PVs, including human PVs. These findings confirm the existence of a common ancestor for already infecting primates before the split of OWP and NP at ∼40 million years ago. Finally, our findings are consistent with an ancient within-species diversity model and emphasize the importance of increasing sampling to help understanding the PV-primate codivergence dynamics and pathogenic potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7326299PMC
http://dx.doi.org/10.1093/ve/veaa036DOI Listing

Publication Analysis

Top Keywords

ancient within-species
8
within-species diversity
8
diversity model
8
provisionally named
8
strains
6
characterization novel
4
novel neotropical
4
neotropical primate
4
primate papillomaviruses
4
papillomaviruses supports
4

Similar Publications

Background: The high burden of malaria in Africa is largely due to the presence of competent and adapted Anopheles vector species. With invasive Anopheles stephensi implicated in malaria outbreaks in Africa, understanding the genomic basis of vector-parasite compatibility is essential for assessing the risk of future outbreaks due to this mosquito. Vector compatibility with P.

View Article and Find Full Text PDF

The Japanese subalpine zone is dominated by an ecologically important forest biome, subalpine coniferous forest, constituting a distinct assemblage of cold-tolerant angiosperm and conifer species. While being relatively intact compared to other forest biomes in Japan, subalpine coniferous forests are under significant threat from deer browsing, global warming and small population size effects. However, there is a severe lack of genetic resources available for this biome's major constituent plant species.

View Article and Find Full Text PDF

Rolling with the punches: Organism-environment interactions shape spatial pattern of adaptive differentiation in the widespread mantis shrimp Oratosquilla oratoria.

Sci Total Environ

March 2024

Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China. Electronic address:

Investigating spatial pattern of adaptive variation and its underlying processes can inform the adaptive potential distributed within species ranges, which is increasingly important in the context of a changing climate. A correct interpretation of adaptive variation pattern requires that population history and the ensuing population genetic structure are taken into account. Here we carried out such a study by integrating population genomic analyses, demographic model testing and species distribution modeling to investigate patterns and causes of adaptive differentiation in a widespread mantis shrimp, Oratosquilla oratoria, along a replicated, broad-scale temperature gradient in the northwestern Pacific (NWP).

View Article and Find Full Text PDF

Mitogenomic architecture and evolution of the soil ciliates .

mSystems

February 2024

Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China.

are cosmopolitan unicellular eukaryotes primarily inhabiting soil and benefiting plant growth, but they remain one of the least understood taxa in genetics and genomics within the realm of ciliated protozoa. Here, we investigate the architecture of assembled mitogenomes of six species, using long-read sequencing and involving 36 newly isolated natural strains in total. The mitogenome sizes span from 43 to 63 kbp and typically contain 2833 protein-coding genes.

View Article and Find Full Text PDF

Sedimentary ancient DNA (sedaDNA) has rarely been used to obtain population-level data due to either a lack of taxonomic resolution for the molecular method used, limitations in the reference material or inefficient methods. Here, we present the potential of multiplexing different PCR primers to retrieve population-level genetic data from sedaDNA samples. Vaccinium uliginosum (Ericaceae) is a widespread species with a circumpolar distribution and three lineages in present-day populations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!