Cyanobacterial thylakoid membranes represent the active sites for both photosynthetic and respiratory electron transport. We used high-resolution atomic force microscopy to visualize the native organization and interactions of photosynthetic complexes within the thylakoid membranes from the model cyanobacterium Synechococcus elongatus PCC 7942. The thylakoid membranes are heterogeneous and assemble photosynthetic complexes into functional domains to enhance their coordination and regulation. Under high light, the chlorophyll-binding proteins IsiA are strongly expressed and associate with Photosystem I (PSI), forming highly variable IsiA-PSI supercomplexes to increase the absorption cross-section of PSI. There are also tight interactions of PSI with Photosystem II (PSII), cytochrome bf, ATP synthase and NAD(P)H dehydrogenase complexes. The organizational variability of these photosynthetic supercomplexes permits efficient linear and cyclic electron transport as well as bioenergetic regulation. Understanding the organizational landscape and environmental adaptation of cyanobacterial thylakoid membranes may help inform strategies for engineering efficient photosynthetic systems and photo-biofactories.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41477-020-0694-3 | DOI Listing |
Plants (Basel)
January 2025
Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou 310058, China.
Heat stress is one of the major concerns for wheat production worldwide. Morphological parameters such as germination, leaf area, shoot, and root growth are affected by heat stress, with affected physiological parameters including photosynthesis, respiration, and water relation. Heat stress also leads to the generation of reactive oxygen species that disrupt the membrane systems of thylakoids, chloroplasts, and the plasma membrane.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Science, Peking University, Beijing 100871, People's Republic of China.
Phycobilisomes (PBS) are the major photosynthetic light-harvesting complexes in cyanobacteria and red algae. While the structures of PBS have been determined in atomic resolutions, how PBS are attached to the reaction centers of photosystems remains less clear. Here, we report that a linker protein (LcpA) is required for the attachment of PBS to photosystem II (PSII) in the cyanobacterium sp.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Department of Plant Anatomy, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Budapest, Hungary.
Investigating the effects of drought stress and subsequent recovery on the structure and function of chloroplasts is essential to understanding how plants adapt to environmental stressors. We investigated Ctenanthe setosa (Roscoe) Eichler, an ornamental plant that can tolerate prolonged drought periods (40 and 49 days of water withdrawal). Conventional biochemical, biophysical, physiological and (ultra)structural methods combined for the first time in a higher plant with in vivo small-angle neutron scattering (SANS) were used to characterize the alterations induced by drought stress and subsequent recovery.
View Article and Find Full Text PDFCommun Biol
January 2025
Institute of biology, Plant Physiology Laboratory, Université de Neuchâtel, 2000, Neuchâtel, Switzerland.
Photosynthetic activity is established during chloroplast biogenesis. In this study we used 680 nm red light to overexcite Photosystem II and disrupt photosynthesis in two conditional mutants (var2 and abc1k1) which reversibly arrested chloroplast biogenesis. During biogenesis, chloroplasts import most proteins associated with photosynthesis.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou 450046, China; State Key Laboratory of High-Efficiency Production of Wheat-Mazie Doubel Cropping, Zhengzhou 450046, China. Electronic address:
Monogalactosyldiacylglycerol (MGDG), as the primary lipid component of thylakoid membranes, has a significant part in plant growth and stress response. The current study employed two transgenic wheat lines (MG1516 and MG1314) overexpressing the MGDG synthase gene (TaMGD) and wild-type cv "JW1" to explore the function of TaMGD in response to high temperature stress during the anthesis stage of wheat. Under high-temperature stress, the overexpressed wheat lines exhibited higher grain weight, increased antioxidant enzyme activity, and lower HO and malondialdehyde contents in leaves.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!