Some antibiotics have lost their efficacy over common infections and this has led to the search for new antibiotics and chemically altering existing ones for a better control of infectious diseases. In the present study, Pyrenacantha grandiflora tubers extracts were conjugated with ampicillin, penicillin, vancomycin and silver nanoparticles and their antimicrobial activity was evaluated against Escherichia coli, Staphylococcus aureus and Klebsiella Pneumoniae. The reactions were confirmed by formation of new functional groups that were identified by Fourier transmission infrared spectroscopy (FTIR). Minimum inhibitory concentrations were determined using the microdilution assay. Minimum bactericidal concentrations and the fractional inhibition concentration index were also determined. FTIR analysis indicated different functional group associated with conjugation. The activity of ampicillin was improved when conjugated with silver nanoparticles against K. pneumonia and E. coli. Vancomycin showed improvement of activity when conjugated to silver nanoparticles against K. pneumonia. Penicillin was improved by acetone extracts and vancomycin showed to be more effective when conjugated with silver nanoparticles and water extracts. The conjugation of P. grandiflora with penicillin, ampicillin and vancomycin in the presence of silver nanoparticles improved their biological activities. Therefore, the conjugates are medicinally important and can be used to improve the activity of existing antibiotics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7360584 | PMC |
http://dx.doi.org/10.1038/s41598-020-68290-x | DOI Listing |
Pharmaceutics
January 2025
Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea.
The development of resistance to traditional antifungal therapies has necessitated the exploration of alternative treatment strategies to effectively manage fungal infections, particularly those induced by (). This research investigates the possibility of integrating silver nanoparticles (AgNPs) with Terbinafine to improve antifungal effectiveness. Terbinafine, while potent, faces challenges with specific fungal strains, highlighting the need for strategies to enhance its treatment efficacy.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni Suef 62764, Egypt.
Liver cancer is a prevalent form of carcinoma worldwide. A novel chitosan-coated optimized formulation capped with irradiated silver nanoparticles (INops) was fabricated to boost the anti-malignant impact of rosuvastatin calcium (RC). Using a 2-factorial design, eight formulations were produced using the solvent evaporation process.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.
Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC, Parque Tecnológico Querétaro s/n Sanfandila, Pedro Escobedo, Querétaro 76703, Mexico.
Our work describes the green synthesis of silver sulfide nanoparticles (AgS NPs) and their formulation into polycaprolactone fibers (PCL), aiming to improve the multifunctional biological performance of PCL membranes as scaffolds. For this purpose, an extract of rosemary () was employed as a reducing agent for the AgS NPs, obtaining irregular NPs and clusters of 5-60 nm, with a characteristic SPR absorption at 369 nm. AgS was successfully incorporated into PCL fibers by electrospinning using heparin (HEP) as a stabilizer/biocompatibility agent, obtaining nanostructured fibers with a ca.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
This review evaluates the cytotoxic potential of the genus, with a focus on , , and . These species, known for their diverse phytochemical compositions, exhibit notable cytotoxic effects that suggest their utility in natural cancer treatments. Compounds such as quercetin, kaempferol, and sesbagrandiforian A and B have been highlighted for their strong antioxidant and antiproliferative effects, further emphasizing their therapeutic potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!