Introduction: Accumulating data point at potentially lasting effects of early childhood therapeutic antibiotic exposure on the intestinal microbial. Little is known on the impact of low-dose longterm antibiotic prophylaxis on the developing intestinal microbiota in children during their first year of life.

Objective: To investigate compositional changes of the intestinal microbiota by next generation sequencing based microbiome analysis and bacterial metabolites in longitudinally collected fecal samples.

Study Design: Twelve patients were analyzed in this prospective, longitudinal pilot study during a period of 70 days (sampling on days 0,7,14,30,70). Only transvaginally and term born babies, breastfed with no prior antibiotic exposure with urogenital malformation (vesicoureteral reflux and/or upper urinary tract dilatation) were included into the study. Seven patients received antibiotic longterm prophylaxis with a second-generation cephalosporin and five did not. Sequencing of bacterial 16 S rRNA allowed for an analysis of the microbiome composition. The Principal coordinate analysis was performed for the evaluation of compositional profile. Furthermore, quantitative measurement of short chain fatty acids served as a proxy for the metabolic activity of the individual microbiome over the study time.

Results: Analysis of observed species, Shannon Index and weighted Unifrac distances between timepoints revealed neither significant difference comparing the prophylaxis group versus the control group over the study period, nor significant changes within the groups over time. Principal coordinate analysis (PCoA) was performed for the evaluation of compositional profile. Also, no differences regarding the fecal SCFA content were found between the two groups (>0.05 at each tested point, Mann-Whitney Test).

Discussion: Although there were interindividual compositional differences of the microbiome (cluster of bacterial composition) at the beginning of the observation, we did not observe significant longitudinal changes regarding both bacterial diversity and SCFAs in neither group. Over the study period, the patient's microbiome remained stable and resilient to the antibiotic exposure in terms of bacterial abundance and metabolism. Limitations to the study are the low number of patients included and the use of one single antibiotic (cefaclor).

Conclusion: This is the first pilot study to demonstrate that long term low-dose antibiotic administration in children under one year of age does neither seem to influence the composition of the intestinal microbiota nor the quantities of bacterial fermentation products compared to untreated controls.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpurol.2020.05.165DOI Listing

Publication Analysis

Top Keywords

antibiotic exposure
12
intestinal microbiota
12
study period
12
low-dose antibiotic
8
antibiotic prophylaxis
8
year age
8
children year
8
pilot study
8
principal coordinate
8
coordinate analysis
8

Similar Publications

Two porphyrin-based polymeric frameworks, SnP-BTC and SnP-BTB, as visible light photocatalysts for wastewater remediation were prepared by the solvothermal reaction of -dihydroxo-[5,15,10,20-tetrakis(phenyl)porphyrinato]tin(IV) (SnP) with 1,3,5-benzenetricarboxylic acid (HBTC) and 1,3,5-tris(4-carboxyphenyl)benzene (HBTB), respectively. The strong bond between the carboxylic acid group of HBTC and HBTB with the axial hydroxyl moiety of SnP leads to the formation of highly stable polymeric architectures. Incorporating the carboxylic acid group onto the surface of SnP changes the conformational frameworks as well as produces rigid structural transformation that includes permanent porosity, good thermodynamic stability, interesting morphology, and excellent photocatalytic degradation activity against AM dye and TC antibiotic under visible light irradiation.

View Article and Find Full Text PDF

Antibiotic tolerance presents a significant challenge in eradicating bacterial infections, as tolerant strains can survive antibiotic treatment, contributing to the recurrence of infections and the development of resistance. However, unlike antibiotic resistance, tolerance is not detectable by standard susceptibility assays such as minimal inhibitory concentration (MIC) tests. Consequently, antibiotic tolerance often goes unnoticed in clinical settings.

View Article and Find Full Text PDF

Background: Nitrofurantoin is a prevalent antibiotic used to treat urinary tract infections. Despite nitrofurantoin's general safety, it can cause serious side effects, including acute pulmonary toxicity, fulminant hepatitis, and severe systemic inflammatory responses, which may mimic conditions such as ischemia and infection. However, reports of acute systemic inflammatory response syndrome after nitrofurantoin ingestion are uncommon in medical literature.

View Article and Find Full Text PDF

Metals have been used throughout history to manage disease. With the rising incidence of antibiotic-resistant bacterial strains, metal-based antimicrobials (MBAs) have re-emerged as an alternative to combat infections. Gallium nitrate has shown promising efficacy against several pathogens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!