The Effects and Potential Mechanism of Oil Palm Phenolics in Cardiovascular Health: A Review on Current Evidence.

Nutrients

Pharmacoepidemiology and Drug Safety Unit, Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia.

Published: July 2020

Cardiovascular disease (CVD) is globally known as the number one cause of death with hyperlipidemia as a strong risk factor for CVD. The initiation of drug treatment will be recommended if lifestyle modification fails. However, medicines currently used for improving cholesterol and low-density lipoprotein cholesterols (LDL-C) levels have been associated with various side effects. Thus, alternative treatment with fewer or no side effects needs to be explored. A potential agent, oil palm phenolics (OPP) recovered from the aqueous waste of oil palm milling process contains numerous water-soluble phenolic compounds. It has been postulated that OPP has shown cardioprotective effects via several mechanisms such as cholesterol biosynthesis pathway, antioxidant and anti-inflammatory properties. This review aims to summarize the current evidence explicating the actions of OPP in cardiovascular health and the mechanisms that maybe involved for the cardioprotective effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400923PMC
http://dx.doi.org/10.3390/nu12072055DOI Listing

Publication Analysis

Top Keywords

oil palm
12
palm phenolics
8
cardiovascular health
8
current evidence
8
side effects
8
cardioprotective effects
8
effects
5
effects potential
4
potential mechanism
4
mechanism oil
4

Similar Publications

Edible oils and ghee are vital parts of our daily culinary practices. In recent years, owing to heightened demand in the domestic and global markets, consistent reports regarding the adulteration of edible oils and ghee with substandard ingredients have been reported. Adulteration in edible oils is widespread, with distinctive contaminants, including cottonseed, mineral, and lower-cost oils like palm olein.

View Article and Find Full Text PDF

Producing homogeneous planting material in oil palm poses a significant challenge, which can be addressed through somatic embryogenesis. This study successfully achieved somatic embryogenesis using immature male inflorescence from Tenera hybrid. Modified Eeuwens medium yielded better results than the Murashige and Skoog (MS) and CHU (N6) media when supplemented with 2,4-D, picloram and α-naphthaleneacetic acid (NAA).

View Article and Find Full Text PDF

The role of membrane technology in palm oil mill effluent (POME) decontamination: Current trends and future prospects.

J Environ Manage

January 2025

Chemical Engineering Department, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia; Research Center for Biosciences and Biotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia.

This article reviews the role of membrane systems in treating palm oil mill effluent (POME), a waste generated by the palm industry. The review focuses on various membrane systems such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO), highlighting their effectiveness in removing pollutants and recovering water. Special attention is given to hybrid systems integrating membrane bioreactors (MBRs) and other advanced processes to enhance fouling control, improve water quality, and promote sustainability.

View Article and Find Full Text PDF

Pretreatment of lignocellulosic biomass is crucial yet challenging for sustainable energy production. This study focuses on enhancing enzymatic accessibility of cellulose in oil palm empty fruit bunches by optimizing pretreatment parameters to improve glucose and ethanol yields while reducing fermentation inhibitors. It evaluates the impact of maleic acid concentrations on biorefinery processes.

View Article and Find Full Text PDF

The analysis of mineral oil aromatic hydrocarbons (MOAH) in vegetable oils is currently associated with high uncertainty due to various factors ranging from sample preparation to data interpretation. One significant factor is the coelution of biogenic compounds of terpenic origin with the MOAH fraction during chromatographic analysis. The common purification method is epoxidation, a chemical reaction that changes the polarity of the interferences, allowing their separation from MOAH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!