Long-Distance Movement of Mineral Deficiency-Responsive mRNAs in /Tomato Heterografts.

Plants (Basel)

Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA.

Published: July 2020

Deficiencies in essential mineral nutrients such as nitrogen (N), phosphorus (P), and iron (Fe) severely limit plant growth and crop yield. It has been discovered that both the local sensing system in roots and shoot-to-root systemic signaling via the phloem are involved in the regulation of the adaptive alterations in roots, in response to mineral deficiency. mRNAs are one group of molecules with systemic signaling functions in response to intrinsic and environmental cues; however, the importance of shoot-to-root mobile mRNAs stimulated by low mineral levels is not fully understood. In this study, we established a /tomato heterograft system to identify shoot-to-root mobile mRNAs that are produced in response to low N, P or Fe. Multiple long-distance mobile mRNAs were identified to be associated with low mineral levels and a few of them may play important roles in hormonal metabolism and root architecture alteration. A comparison of the mobile mRNAs from our study with those identified from previous studies showed that very few transcripts are conserved among different species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412313PMC
http://dx.doi.org/10.3390/plants9070876DOI Listing

Publication Analysis

Top Keywords

mobile mrnas
16
systemic signaling
8
shoot-to-root mobile
8
low mineral
8
mineral levels
8
mrnas
6
mineral
5
long-distance movement
4
movement mineral
4
mineral deficiency-responsive
4

Similar Publications

SINEs are mobile genetic elements of multicellular eukaryotes that arose during evolution from various tRNAs, as well as from 5S rRNA and 7SL RNA. Like the genes of these RNAs, SINEs are transcribed by RNA polymerase III. The transcripts of some mammalian SINEs have the capability of AAUAAA-dependent polyadenylation, which is unique for transcript generated by RNA polymerase III.

View Article and Find Full Text PDF

Transposable elements (TEs) are mobile genomic elements constituting a big fraction of eukaryotic genomes. They ignite an evolutionary arms race with host genomes, which in turn evolve strategies to restrict their activity. Despite being tightly repressed, TEs display precisely regulated expression patterns during specific stages of mammalian development, suggesting potential benefits for the host.

View Article and Find Full Text PDF

A mobile miR160-triggered transcriptional axis controls root stem cell niche maintenance and regeneration in Arabidopsis.

Dev Cell

October 2024

State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China. Electronic address:

In multicellular organisms, communication between cells is vital for their fate determination. In plants, the quiescent center (QC) signals to adjacent stem cells to maintain them undifferentiated. However, how surrounding stem cells instruct the QC remains poorly understood.

View Article and Find Full Text PDF

Recent studies have suggested that Transposable Elements (TEs) residing in introns frequently splice into and alter primary gene-coding transcripts. To re-examine the exonization frequency of TEs into protein-coding gene transcripts, we re-analyzed a Drosophila neuron circadian rhythm RNAseq dataset and a deep long RNA fly midbrain RNAseq dataset using our Transposon Insertion and Depletion Analyzer (TIDAL) program. Our TIDAL results were able to predict several TE insertions from RNAseq data that were consistent with previous published studies.

View Article and Find Full Text PDF

m5C and m6A modifications regulate the mobility of pumpkin CHOLINE KINASE 1 mRNA under chilling stress.

Plant Physiol

September 2024

Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China.

Mobile mRNAs serve as crucial long-distance signaling molecules, responding to environmental stimuli in plants. Although many mobile transcripts have been identified, only a limited subset has been characterized as functional long-distance signals within specific plant species, raising an intriguing question about whether the prevalence of species specificity in mobile transcripts implies a divergence in the mechanisms governing mRNA mobility across distinct plant species. Our study delved into the notable case of CHOLINE KINASE 1 (CK1), an extensively studied instance of mobile mRNAs regulated by a tRNA-like sequence (TLS) in Arabidopsis (Arabidopsis thaliana).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!