A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optofluidic Formaldehyde Sensing: Towards On-Chip Integration. | LitMetric

Formaldehyde (HCHO), a chemical compound used in the fabrication process of a broad range of household products, is present indoors as an airborne pollutant due to its high volatility caused by its low boiling point ( T = - 19 °C). Miniaturization of analytical systems towards palm-held devices has the potential to provide more efficient and more sensitive tools for real-time monitoring of this hazardous air pollutant. This work presents the initial steps and results of the prototyping process towards on-chip integration of HCHO sensing, based on the Hantzsch reaction coupled to the fluorescence optical sensing methodology. This challenge was divided into two individually addressed problems: (1) efficient airborne HCHO trapping into a microfluidic context and (2) 3,5-diacetyl-1,4-dihydrolutidine (DDL) molecular sensing in low interrogation volumes. Part (2) was addressed in this paper by proposing, fabricating, and testing a fluorescence detection system based on an ultra-low light Complementary metal-oxide-semiconductor (CMOS) image sensor. Two three-layer fluidic cell configurations (-SU-8-quartz and -SU-8-quartz) were tested, with both possessing a 3.5 µL interrogation volume. Finally, the CMOS-based fluorescence system proved the capability to detect an initial 10 µg/L formaldehyde concentration fully derivatized into DDL for both the quartz and silicon fluidic cells, but with a higher signal-to-noise ratio () for the silicon fluidic cell ( S N R s i l i c o n = 6.1 ) when compared to the quartz fluidic cell ( S N R q u a r t z = 4.9 ). The signal intensity enhancement in the silicon fluidic cell was mainly due to the silicon absorption coefficient at the excitation wavelength,   a ( λ a b s = 420   nm ) = 5 × 10 4   cm - 1 , which is approximately five times higher than the absorption coefficient at the fluorescence emission wavelength, a ( λ e m = 515   nm ) = 9.25 × 10 3   cm - 1 .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407611PMC
http://dx.doi.org/10.3390/mi11070673DOI Listing

Publication Analysis

Top Keywords

fluidic cell
16
silicon fluidic
12
on-chip integration
8
absorption coefficient
8
fluidic
5
optofluidic formaldehyde
4
sensing
4
formaldehyde sensing
4
sensing on-chip
4
integration formaldehyde
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!