The Apoplast: A Key Player in Plant Survival.

Antioxidants (Basel)

Grupo de Bioquímica y Biotecnología, Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I de Castellón, Avenida de Vicent Sos Baynat, s/n, 12071 Castellón de la Plana, Spain.

Published: July 2020

AI Article Synopsis

  • The apoplast includes intercellular spaces, cell walls, and xylem, playing a vital role in nutrient and water transport, cellulose synthesis, and plant defense against various stresses.
  • Apoplastic reactive oxygen species (ROS) and antioxidants are crucial for plant development and stress responses, as they help detoxify harmful ROS and provide stress tolerance.
  • The apoplast contains proteins, peptides, and hormones that respond to stress, as well as MAMPs from pathogens, emphasizing its critical role in plant cell survival.

Article Abstract

The apoplast comprises the intercellular space, the cell walls, and the xylem. Important functions for the plant, such as nutrient and water transport, cellulose synthesis, and the synthesis of molecules involved in plant defense against both biotic and abiotic stresses, take place in it. The most important molecules are ROS, antioxidants, proteins, and hormones. Even though only a small quantity of ROS is localized within the apoplast, apoplastic ROS have an important role in plant development and plant responses to various stress conditions. In the apoplast, like in the intracellular cell compartments, a specific set of antioxidants can be found that can detoxify the different types of ROS produced in it. These scavenging ROS components confer stress tolerance and avoid cellular damage. Moreover, the production and accumulation of proteins and peptides in the apoplast take place in response to various stresses. Hormones are also present in the apoplast where they perform important functions. In addition, the apoplast is also the space where microbe-associated molecular Patterns (MAMPs) are secreted by pathogens. In summary, the diversity of molecules found in the apoplast highlights its importance in the survival of plant cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7402137PMC
http://dx.doi.org/10.3390/antiox9070604DOI Listing

Publication Analysis

Top Keywords

apoplast
8
plant
6
ros
5
apoplast key
4
key player
4
player plant
4
plant survival
4
survival apoplast
4
apoplast comprises
4
comprises intercellular
4

Similar Publications

Understanding the role and mode of action of nutrient transporters requires information about their dynamic associations with plant membranes. Historically, apoplastic nutrient export has been associated with proteins localized at the plasma membrane (PM), while the role of endomembrane localization has been less explored. However, recent work on the PHOSPHATE 1 (PHO1) inorganic phosphate (Pi) exporter demonstrated that, although primarily localized at the Golgi and trans-Golgi network (TGN) vesicles, PHO1 does associate with the PM when clathrin-mediated endocytosis (CME) was inhibited, supporting a mechanism for Pi homeostasis involving exocytosis.

View Article and Find Full Text PDF

Deficiency or excess of mineral elements in the environment is a primary factor limiting crop yields and nutritional quality. Lotus (Nelumbo nucifera) is an important aquatic crop in Asia, but the mechanism for accumulating mineral nutrients and coping with nutrient deficiency/excess is still largely unknown. Here, we identified NnMTP10, a member of the cation diffusion facilitator family, by screening the cDNA library of lotus.

View Article and Find Full Text PDF

The apoplastic pH (pH) in plants is susceptible to environmental stimuli. However, the biological implications of pH variation have remained largely unknown. The universal stress phytohormone abscisic acid (ABA) as well as the major environmental stimuli drought and salinity were selected as representative cases to investigate how changes in pH relate to plant behaviors in Arabidopsis.

View Article and Find Full Text PDF

Nitrogen fertilizer delivery inefficiencies limit crop productivity and contribute to environmental pollution. Herein, we developed Zn- and Fe-doped hydroxyapatite nanomaterials (ZnHAU, FeHAU) loaded with urea (∼26% N) through hydrogen bonding and metal-ligand interactions. The nanomaterials attach to the leaf epidermal cuticle and localize in the apoplast of leaf epidermal cells, triggering a slow N release at acidic conditions (pH 5.

View Article and Find Full Text PDF

Understanding the molecular mechanisms of abiotic stress responses in plants is instrumental for the development of climate-resilient crops. Key factors in abiotic stress responses, such as the proton- pumping pyrophosphatase (AVP1), have been identified, but their function and regulation remain elusive. Here, we explored the post-translational regulation of AVP1 by the ubiquitin-conjugating enzyme UBC34 and its relevance in the salt stress and phosphate starvation responses of Arabidopsis (Arabidopsis thaliana).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!