Reconstructing of Embedded High-Aspect-Ratio Nano-Voids Generated by Ultrafast Laser Bessel Beams.

Micromachines (Basel)

Electronic Information College, and Center of Optical Imagery Analysis and Learning, Northwestern Polytechnical University, Xi'an 710072, China.

Published: July 2020

Ultrafast non-diffractive Bessel laser beams provide strong light confinement and show robust advantages for fabricating high-aspect-ratio nanoscale structures inside transparent materials. They take the form of nanoscale voids with typical diameters well below the wavelength and aspect ratio of more than 1000. Delivering 3D morphologies of such nanoscale voids is an important issue to evaluate the result for fabrication. However, the characterization of such laser-induced structures is a difficult task. Here, an accurate and time-saving tomography-like methodology is proposed and adopted for reconstructing the morphology of high-aspect-ratio nano-holes. The technique allows an accurate assertion of laser parameters and position on nano-structured features. The reconstructed configuration reveals that nanoholes morphologies have a close relationship with energy distribution in the focal region. It suggests that the configuration of micro-explosion can be controlled by laser energy deposition in the process of laser-matter interaction down to the nanoscale.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408219PMC
http://dx.doi.org/10.3390/mi11070671DOI Listing

Publication Analysis

Top Keywords

nanoscale voids
8
reconstructing embedded
4
embedded high-aspect-ratio
4
high-aspect-ratio nano-voids
4
nano-voids generated
4
generated ultrafast
4
laser
4
ultrafast laser
4
laser bessel
4
bessel beams
4

Similar Publications

As nanocrystalline materials exhibit complex disorders, assessment of the local disorder at the nanoscale induced by implanted lattice defects plays a crucial role in understanding the structure-function relationship in these materials. In this report, a comprehensive structural analysis was performed on upconverting nanocrystals (UCNCs) of NaYF/Nd/Yb/Tm, containing varying concentrations of Li to induce deliberate lattice defects. Subsequently, a comprehensive structural analysis of the UCNCs was performed using synchrotron radiation-based high-resolution X-ray diffraction (HRXRD), high-energy total angle scattering coupled with pair distribution function (PDF) analysis, neutron diffraction (ND) and EXAFS probing.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are tackling the challenge of creating functional materials that direct heat flow in specific ways to improve thermal management.
  • They used a technique called spatiotemporally resolved thermoreflectance to study how heat moves in supercrystals made from anisotropic gold (Au) nanocrystals, finding that heat flows more easily along the long axis of these nanocrystals.
  • By adjusting the shape of the nanocrystals, they demonstrated increased control over heat directionality, and they used simulations to understand this behavior, offering insights for future applications in thermal management technologies.
View Article and Find Full Text PDF

QXAFS study of CO and H adsorption on Pt in [PtAu(PPh)]-H[PMoO] solid.

Nanoscale

November 2024

Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi, Tokyo 192-0397, Japan.

The adsorption behaviors of H and CO molecules in crown-motif [PtAu(PPh)]-H[PMoO] (PtAu8-PMo12) solids were investigated by quick-scan X-ray absorption fine structure (QXAFS) measurements with a time resolution of 0.1 s. The electronic state of Pt in PtAu8-PMo12 was drastically changed by the adsorption of H and CO molecules because of the formation of Pt-H/Pt-CO interactions.

View Article and Find Full Text PDF
Article Synopsis
  • Optical metasurfaces can control electromagnetic waves at very thin surfaces, specifically in the mid-infrared (mid-IR) region, enhancing applications like biochemical sensing and spectroscopy.
  • Current mid-IR metasurfaces are often made on substrates that reduce performance and complicate access to important electromagnetic hotspots, while alternative IR-transparent materials can be problematic or costly.
  • This study introduces new free-standing silicon (Si) membrane metasurfaces that improve light trapping and resonance quality, enabling scalable production and advanced applications in fields like quantum mechanics and biochemical sensing.
View Article and Find Full Text PDF

The thermodynamic effects of solute on void nucleation in Mg alloys.

J Chem Phys

July 2024

Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA.

Replica exchange transition interface sampling simulations in Mg-Al alloys with high vacancy concentrations indicate that the presence of a solute reduces thermodynamic barriers to the clustering of vacancies and the formation of voids. The emergence of local minima in the free energy along the reaction coordinate suggests that void formation may become a multi-step process in the presence of a solute. In this scenario, vacancies agglomerate with solute before they coalesce into a stable void with well-defined internal surfaces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!