Chronic retinoic acid treatment induces affective disorders by impairing the synaptic plasticity of the hippocampus.

J Affect Disord

Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China. Electronic address:

Published: September 2020

Background: More and more people are suffering from depression in modern society. It is believed that the development of depression results from alterations in synaptic transmission, especially in the hippocampus. Animal experiments and clinical studies have demonstrated that retinoids are essential components in hippocampal synaptic plasticity, and they have a close relationship with depression. However, it is still unclear how excessive retinoic acid (RA) causes depression and what synaptic and molecular mechanisms underlie it.

Methods: Behavioral, electrophysiological, and molecular approaches were employed to characterize the effects of RA on depression and synaptic plasticity. RA was continuously administered intracerebroventricularly through an osmotic pump.

Results: RA treatment induced depression-like behaviors, as evidenced by decreased sucrose preference and increased immobile duration in both the forced swim test and the tail suspension test. RA administration also induced anxiety-like behaviors, indicated by decreased duration in the open arms of the elevated plus maze and the central of the open field. RA treatment decreased the neuronal excitability of the hippocampus either by changing the excitatory/inhibitory receptor balance or by promoting the synthesis of inhibitory neurotransmitters. Moreover, long-term potentiation was decreased in both the excitatory postsynaptic potential and the population spike in RA-treated rats, presumably a consequence of the reduced glur1 transcript level.

Limitations: The mechanism of how excess RA affects the hippocampal gene expression and synaptic plasticity requires further study.

Conclusions: RA treatment can induce depression-like behavior in rats and impair hippocampal plasticity. Thus, improving synaptic plasticity in the hippocampus may ameliorate the affective disorders caused by excessive RA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jad.2020.05.114DOI Listing

Publication Analysis

Top Keywords

synaptic plasticity
20
retinoic acid
8
affective disorders
8
plasticity hippocampus
8
depression synaptic
8
synaptic
7
plasticity
6
depression
5
chronic retinoic
4
treatment
4

Similar Publications

Neural Plasticity in Migraine Chronification.

Eur J Neurosci

January 2025

Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, Plock, Poland.

Chronic migraine (CM) is the ultimate and most burdensome form of the transformation from episodic migraine (EM), called chronification. The mechanism behind migraine chronification is poorly known and difficult to explore as CM has the same spectrum of pathogenesis as EM and the EM-CM transition is bidirectional. Central sensitization (CS) is a key phenomenon in migraine: its mechanisms include disturbed neural plasticity, which is the ability of the nervous system to adapt to endo- and exogenous changes.

View Article and Find Full Text PDF

Background: Subcortical ischemic vascular dementia (SIVD) is a common subtype of vascular dementia. Currently, the bilateral common carotid artery stenosis (BCAS) mouse model is the most suitable SIVD rodent model. In this study, we investigated the functional and structural impairments in the hippocampus 1 month after BCAS.

View Article and Find Full Text PDF

Essential Tremor (ET) is the most common movement disorder and has a worldwide prevalence of 1%, including 5% of the population over 65 years old. It is characterized by an active, postural or kinetic tremor, primarily affecting the upper limbs, and is diagnosed based on clinical characteristics. The pathological mechanisms of ET, however, are mostly unknown.

View Article and Find Full Text PDF

The cytoskeleton, composed of microtubules, intermediate filaments and actin filaments is vital for various cellular functions, particularly within the nervous system, where microtubules play a key role in intracellular transport, cell morphology, and synaptic plasticity. Tubulin-specific chaperones, including tubulin folding cofactors (TBCA, TBCB, TBCC, TBCD, TBCE), assist in the proper formation of α/β-tubulin heterodimers, essential for microtubule stability. Pathogenic variants in these chaperone-encoding genes, especially TBCD, have been linked to Progressive Encephalopathy with Brain Atrophy and Thin Corpus Callosum (PEBAT, OMIM #604,649), a severe neurodevelopmental disorder.

View Article and Find Full Text PDF

Memory is a dynamic process of encoding, storing, and retrieving information. It includes sensory, short-term, and long-term memory, each with unique characteristics. Nitric oxide (NO) is a biological messenger synthesized on demand by neuronal nitric oxide synthase (nNOS) through a biochemical process initiated by glutamate binding to NMDA receptors, causing membrane depolarization and calcium influx.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!